1. (20) (Show all work). Let W be the region inside the sphere of radius 3 given by $x^{2}+y^{2}+z^{2}=$ 9 which is bounded by $x \geq 0, y \geq 0, z \leq 0$. Let $f(x, y, z)=x+y^{2}+z^{3}$. In Cartesian coordinates, $\iiint_{W} f d V=\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{-\sqrt{9-x^{2}-y^{2}}}^{0}\left(x+y^{2}+z^{3}\right) d z d y d x$.
Write down, but do not evaluate iterated integrals which equal $\iiint_{W} f d V$ in:
(a) Cylindrical coordinates:
(b) Spherical coordinates:
2. (15) (Show all work). Let $f(x, y)=x^{3} \sin \left(y^{3}\right)$, and let D be the region in the $x y$-plane bounded by $x=0, x=2, y=x^{2}$ and $y=4$.
(a) Draw (and shade) the region of integration D.
(b) Write down two iterated integrals (reversing the order of integration to obtain the second) which equal $\iint_{D} x^{3} \sin \left(y^{3}\right) d A$.
(c) Evaluate either integral in part (b).
3. (10)(Show all work). Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{0} e^{x^{2}+y^{2}} d x d y$.
4. (10) (Show all work). Let $\mathbf{F}=\left(-y, x, e^{x y z}\right)$ be a vector field, and $\mathbf{c}(t)=\left(t^{3}, t^{2}, 7\right), 0 \leq t \leq 2$ a path. Evaluate the (line) integral of the vector field \mathbf{F} along the given path.
5. (20) (Show all work). The region W is the region in the first octant (i.e., $x, y, z \geq 0$) and between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$.
Evaluate the integral $\iiint_{W} \frac{z^{2}}{x^{2}+y^{2}+z^{2}} d V$
6. (15) (Show all work). Let D be the region in the plane consisting of that part of the unit disk $x^{2}+y^{2} \leq 1$, which lies on or above the lines $y=0$ and $y=(\sqrt{3}) x$. If the mass density of the region is given by the function $\delta(x, y)=\sin \left(x^{2}+y^{2}\right)$, find the mass of the region.
7. (10) (Show all work). Observe that $\mathbf{F}=\left(2 x y, x^{2}\right)$ is a gradient vector field ($\mathbf{F}=\nabla f$ for $\left.f(x, y)=x^{2} y\right)$.
Let $\mathbf{c}_{1}(t)=(t, 2+\sin t)(0 \leq t \leq 4 \pi)$ and $\mathbf{c}_{2}(t)=(2 \pi(1+\cos t), 2(1+\sin t))(0 \leq t \leq \pi)$ be two paths whose images connect the points $(0,2)$ and $(4 \pi, 2)$.
Determine the values of $\int_{\mathbf{c}_{1}} \nabla f \cdot d \mathbf{s}$ and $\int_{\mathbf{c}_{2}} \nabla f \cdot d \mathbf{s}$, and explain why they are related.
