1. (20) (Show all work). Let W be the region inside the sphere of radius 3 given by $x^2 + y^2 + z^2 =$ 9 which is bounded by $x \ge 0, y \ge 0, z \le 0$. Let $f(x, y, z) = x + y^2 + z^3$. In Cartesian coordinates, $\int \int \int_W f \, dV = \int_0^3 \int_0^{\sqrt{9-x^2}} \int_{-\sqrt{9-x^2-y^2}}^0 (x+y^2+z^3) \, dz \, dy \, dx$.

Write down, but do **not** evaluate iterated integrals which equal $\int \int \int_W f \, dV$ in:

- (a) Cylindrical coordinates:
- (b) Spherical coordinates:
- 2. (15) (Show all work). Let $f(x, y) = x^3 \sin(y^3)$, and let D be the region in the xy-plane bounded by $x = 0, x = 2, y = x^2$ and y = 4.
 - (a) Draw (and shade) the region of integration D.
 - (b) Write down two iterated integrals (reversing the order of integration to obtain the second) which equal $\int \int_D x^3 \sin(y^3) \, dA$.
 - (c) Evaluate either integral in part (b).

3. (10)(**Show all work**). Evaluate
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{0} e^{x^2+y^2} dx \, dy$$
.

- 4. (10) (Show all work). Let $\mathbf{F} = (-y, x, e^{xyz})$ be a vector field, and $\mathbf{c}(t) = (t^3, t^2, 7), 0 \le t \le 2$ a path. Evaluate the (line) integral of the vector field \mathbf{F} along the given path.
- 5. (20) (Show all work). The region W is the region in the first octant (i.e., $x, y, z \ge 0$) and between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 9$.

Evaluate the integral $\int \int \int_W \frac{z^2}{x^2 + y^2 + z^2} \, dV$

- 6. (15) (Show all work). Let D be the region in the plane consisting of that part of the unit disk $x^2 + y^2 \leq 1$, which lies on or above the lines y = 0 and $y = (\sqrt{3})x$. If the mass density of the region is given by the function $\delta(x, y) = \sin(x^2 + y^2)$, find the mass of the region.
- 7. (10) (Show all work). Observe that $\mathbf{F} = (2xy, x^2)$ is a gradient vector field ($\mathbf{F} = \nabla f$ for $f(x, y) = x^2 y$). Let $\mathbf{c}_{-}(t) = (t, 2) + \sin t$) ($0 \le t \le 4\pi$) and $\mathbf{c}_{-}(t) = (2\pi(1 + \cos t), 2(1 + \sin t))$ ($0 \le t \le \pi$) has

Let $\mathbf{c}_1(t) = (t, 2 + \sin t)$ $(0 \le t \le 4\pi)$ and $\mathbf{c}_2(t) = (2\pi(1 + \cos t), 2(1 + \sin t))$ $(0 \le t \le \pi)$ be two paths whose images connect the points (0, 2) and $(4\pi, 2)$.

Determine the values of $\int_{\mathbf{c}_1} \nabla f \cdot d\mathbf{s}$ and $\int_{\mathbf{c}_2} \nabla f \cdot d\mathbf{s}$, and explain why they are related.