- 1. (10) (Show all work). Let $T(x, y, z) = x^3 + y^4 xyz^2$. Determine whether T is increasing or decreasing at the point (1, -2, 1) in the direction of the vector $\mathbf{u} = (1/\sqrt{3}, -1/\sqrt{3}, -1/\sqrt{3}).$
- 2. (15) (Show all work). The level surface $G(x, y, z) = (x 2)^4 + (y 2)^4 + (z 1)^2 = 3$ and graph of $f(x, y) = 4 x^2 y^2$ are two surfaces which intersect at the point (1, 1, 2). Determine whether or not they are tangent at that point, that is, whether they have the same tangent plane.
- 3. (15) (Show all work).
 - (a) Let $\mathbf{g}(x, y) = (x + y, x^2 y^2, x^3 y)$. Find the derivative matrix $D\mathbf{g}(1, 2)$.
 - (b) Suppose that $\mathbf{f} : \mathbb{R}^3 \to \mathbb{R}^2$ has derivative matrix $D\mathbf{f} = \begin{pmatrix} 1 vw & 1 uw & 1 uv \\ 2u & 2v & 1 \end{pmatrix}$. With \mathbf{g} as above, find $D(\mathbf{f} \circ \mathbf{g})(1, 2)$.
- 4. (15) (Show all work). Consider the path $\mathbf{c}(t) = (\sin(5t), \sqrt{3}\sin(5t), 2\cos(5t)).$
 - (a) For which values of α, β, γ is $\mathbf{c}(t)$ a flowline for the vector field $\mathbf{F}(x, y, z) = (\alpha z, \beta z, \gamma x)$?
 - (b) Compute the arclength of $\mathbf{c}(t)$ for t from 1 to 5.
- 5. (15) (Show all work). Consider the vector field $\mathbf{F}(x, y, z) = (2x, 3y^2z, y^3 + \sin z)$.
 - (a) Show that the vector field **F** is a gradient field by finding a function f with $\mathbf{F} = \nabla f$ and f(0,0,0) = 4.
 - (b) Compute the curl, $\nabla \times \mathbf{F}$.
 - (c) Compute the divergence, $\nabla \bullet \mathbf{F}$.
- 6. (15) (Show all work). Show that the path $\mathbf{c}(t) = (3e^t 3, \sin t + 3, t^4/4 + t 2)$ is tangent to the surface $F(x, y, z) = x^5 + y^2 3z^2 + xyz = -3$ at the point corresponding to t = 0. (In particular, this means that the tangent line to the curve would have to lie in the tangent plane to the surface).
- 7. (15) Parametrize the curve which is the intersection of the level surface $-17x^2 + 9y^2 + 2z^2 + 25 = 0$ and the plane 3x + z = 1. *Hint:* the curve is an ellipse.