Part I: Multiple choice. Each problem is worth 5 points.

- 1. The integral $\iint_R (x^2 + e^y) dx dy$, where $R = [0, 1] \times [0, \ln 2]$ is equal to
 - (a) $\frac{1}{3} \ln 2$
 - (b) $\ln 2 + 1$
 - (c) $\frac{1}{2} \ln 2 + 1$
 - (d) ln 2
- 2. The integral $\int_{-1}^{4} \int_{y+1}^{5} e^{x^2} dx dy$ is equal to
 - (a) cannot be evaluated since e^{x^2} does not have antiderivatives in terms of elementary functions.
 - (b) $5e^{25} e^5 + 1$
 - (c) $e^{25} e^{16} + e^{-1}$
 - (d) $\frac{1}{2}e^{25} \frac{1}{2}$
- 3. Consider the integral $\int_0^2 \int_0^{4-2y} f(x,y) \ dx \ dy$. Changing limits of integration makes it equal to
 - (a) $\int_0^4 \int_{\frac{4-x}{2}}^2 f(x,y) \ dy \ dx$
 - (b) $\int_0^{\frac{4-x}{2}} \int_0^4 f(x,y) \ dy \ dx$
 - (c) $\int_0^4 \int_0^{\frac{4-x}{2}} f(x,y) \ dy \ dx$
 - (d) $\int_0^{4-2y} \int_0^2 f(x,y) \ dy \ dx$
- 4. Consider the triple integral $\int \int \int_W f(x,y,z) \ dx \ dy \ dz$ over a region W in space. When writing it as an iterated integral $\int \int \int \int f(x,y,z) dx \ dz \ dy$ the limits of integration are of the form (a and b are real numbers)
 - (a) $h_1(x,z) \le y \le h_2(x,z), g_1(y) \le z \le g_2(y), a \le x \le b$
 - (b) $h_1(y, z) \le x \le h_2(y, z), g_1(y) \le z \le g_2(y), a \le y \le b$
 - (c) $h_1(y, z) \le x \le h_2(y, z), g_1(z) \le y \le g_2(z), a \le z \le b$
 - (d) $h_1(x,y) \le z \le h_2(x,y), g_1(y) \le x \le g_2(y), a \le y \le b$
- 5. Given the point $(\sqrt{2},0,1)$ in Cartesian coordinates, its cylindrical coordinates are
 - (a) $(\sqrt{2},0,1)$
 - (b) $(\sqrt{2}, \pi, 1)$
 - (c) $(\sqrt{3},0,1)$
 - (d) $(\sqrt{2}, \frac{\pi}{2}, 1)$

- 6. Given the point (-1,0,1) in Cartesian coordinates, its spherical coordinates are
 - (a) $(1,0,\frac{\pi}{4})$
 - (b) $(\sqrt{2}, 0, \frac{\pi}{4})$
 - (c) $(\sqrt{2}, \frac{\pi}{4}, 0)$
 - (d) $(\sqrt{2}, \pi, \frac{\pi}{4})$
- 7. Let *D* be the region bounded by $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. The value of the integral $\int \int_{D} (x^2 + y^2 + 1) dx dy$ is
 - (a) $\frac{20}{3}\pi$
 - (b) $\frac{15}{2}\pi$
 - (c) $\frac{21}{2}\pi$
 - (d) 3π
- 8. Match the integrals with the type of coordinates which make them easiest to do.

(1)
$$\iint \int \int_E (x+y+z) \ dx \ dy \ dz$$
, where $E = [0,1] \times [0,1] \times [0,1]$

(2)
$$\iint_D e^{\sqrt{x^2+y^2}} dx dy$$
, where *D* is: $x^2 + y^2 \le 1$

(3)
$$\iint \int \int_E (x^2 + y^2 + z^2) dx dy dz$$
, where E is: $x^2 + y^2 \le 1$, $0 \le z \le 1$

(4)
$$\iint_E (x^2 + y^2 + z^2) dx dy dz$$
, where E is: $x^2 + y^2 + z^2 \le 1$

- (i) polar coordinates
- (ii) spherical coordinates
- (iii) cartesian coordinates
- (iv) cylindrical coordinates
- (a) 1 iii, 2 i, 3 ii, 4 ii
- (b) 1 iv, 2 i, 3 iv, 4 ii
- (c) 1 iii, 2 iii, 3 iv, 4 ii
- (d) 1 iii, 2 i, 3 iv, 4 ii
- 9. The line integral of $F = \nabla f$, where $f(x, y, z) = x^2 + y^2 + z^2$, along the path $c(t) = (e^t \cos t, e^t \sin t, 3), 0 \le t \le \frac{\pi}{2}$, is equal to
 - (a) $e^{\pi} 1$
 - (b) 0
 - (c) 1
 - (d) $e^{\frac{\pi}{2}} 1$
- 10. Which of the following is false?
 - (a) The value of the line integral of a vector field along a path between two given points depends on the path chosen.
 - (b) $\int_{c_1} F \cdot ds = \int_{c_2} F \cdot ds$ whenever c_1 and c_2 are reparametrizations of the same curve.
 - (c) $\int_{c_1} F \cdot ds = \int_{c_2} F \cdot ds$ for all curves c_1 and c_2 with common start points and common end points.

(d) If F is a gradient field and (x_0, y_0, z_0) and (x_1, y_1, z_1) are fixed points in space, then the line integral of F is the same along all curves starting at (x_0, y_0, z_0) and ending at (x_1, y_1, z_1) .

Part II: You can earn partial credit on the next five problems.

11. (9 points) Evaluate

$$\int \int \int_{E} z^{2} dx dy dz,$$

where E is the region inside the cylinder $x^2 + y^2 \le 1$ bounded below by the plane z = 0 and above by the paraboloid $z = x^2 + y^2$.

- 12. (17 points) Calculate the volume of the solid inside $x^2 + y^2 + z^2 = 1$ and outside $z^2 = x^2 + y^2$.
- 13. (10 points) Rewrite the integral

$$\int_0^2 \int_0^1 \int_0^{2-2x} f(x, y, z) \ dy \ dx \ dz$$

as

$$\int_a^b \int_{g_1(z)}^{g_2(z)} \int_{h_1(y,z)}^{h_2(y,z)} f(x,y,z) \ dx \ dy \ dz$$

14. (14 points) Find the work done by the force $F(x,y) = (x^2 - y^2) \mathbf{i} + 2xy \mathbf{j}$ in moving a particle counterclockwise around the square in the plane having corners (0,0), (5,0), (5,5) and (0,5).

The following problem is optional and the points are additional credit.

- 15. (10 points) (i) Let $F = x^2 \mathbf{i} xy \mathbf{j} + \mathbf{k}$. Evaluate the line integral of F along
 - (a) $c_1(t) = (1+2t) \mathbf{i} + \mathbf{k}, -1 \le t \le 1$
 - (b) $c_2(t) = \cos t \, \mathbf{i} + (1 + \sin t) \, \mathbf{k}, \, -\pi \le t \le 0$
 - (ii) Does there exist a function $f: \mathbb{R}^3 \to \mathbb{R}$ such that $\frac{\partial f}{\partial x} = x^2$, $\frac{\partial f}{\partial y} = -xy$ and $\frac{\partial f}{\partial z} = 1$? Explain.