Math 13 Homework #9

Will not be collected

(1) Let $\mathbf{F} = \langle y, x, x^2 + y^2 \rangle$ and let \mathcal{S} be the top half of the sphere $x^2 + y^2 + z^2 = 1$ (i.e., $z \ge 0$), oriented with outward-pointing normal vectors. Let \mathcal{C} be the circle $x^2 + y^2 = 1$ in the *xy*-plane with the boundary orientation. Verify Stokes' Theorem by computing

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \quad \text{and} \quad \iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}.$$

- (2) Let $\mathbf{F} = \langle y^2, 2z + x, 2y^2 \rangle$. Use Stokes' Theorem to find a plane with equation ax + by + cz = 0 (where a, b, and c are not all zero) such that $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed curve \mathcal{C} lying in the plane. (Hint: choose a, b, c so that $\operatorname{curl}(\mathbf{F})$ lies in the plane).
- (3) Let I be the flux of $\mathbf{F} = \langle e^y, 2xe^{x^2}, z^2 \rangle$ out of the upper hemisphere \mathcal{S} of the unit sphere.
 - (a) Let $\mathbf{G} = \langle e^y, 2xe^{x^2}, 0 \rangle$. Find a vector field $\mathbf{A} = \langle 0, 0, A_3 \rangle$ such that $\operatorname{curl}(\mathbf{A}) = \mathbf{G}$.
 - (b) Use Stokes' Theorem to show that the flux of **G** through S is zero (i.e., show that $\iint_{S} \mathbf{G} \cdot d\mathbf{S} = 0.$)
 - (c) Calculate I. Hint: Use part (b) to show that $I = \iint_{\mathcal{S}} \langle 0, 0, z^2 \rangle \cdot d\mathbf{S}$.
- (4) Use the Divergence Theorem to evaluate the flux $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = \langle y, z, x \rangle$ and \mathcal{S} is the sphere $x^2 + y^2 + z^2 = 1$, oriented with outward-pointing normal vectors.
- (5) Let \mathcal{W} be the region between the sphere of radius 4 and the cube of side lengths 1, both centered at the origin. What is the flux though the boundary $\mathcal{S} = \partial \mathcal{W}$ of a vector field \mathbf{F} whose divergence has the constant value div(\mathbf{F}) = -4?