Math 13 Homework \#9

Will not be collected
(1) Let $\mathbf{F}=\left\langle y, x, x^{2}+y^{2}\right\rangle$ and let \mathcal{S} be the top half of the sphere $x^{2}+y^{2}+z^{2}=1$ (i.e., $z \geq 0$), oriented with outward-pointing normal vectors. Let \mathcal{C} be the circle $x^{2}+y^{2}=1$ in the $x y$-plane with the boundary orientation. Verify Stokes' Theorem by computing

$$
\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r} \quad \text { and } \quad \iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S} .
$$

(2) Let $\mathbf{F}=\left\langle y^{2}, 2 z+x, 2 y^{2}\right\rangle$. Use Stokes' Theorem to find a plane with equation $a x+$ $b y+c z=0$ (where a, b, and c are not all zero) such that $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed curve \mathcal{C} lying in the plane. (Hint: choose a, b, c so that $\operatorname{curl}(\mathbf{F})$ lies in the plane).
(3) Let I be the flux of $\mathbf{F}=\left\langle e^{y}, 2 x e^{x^{2}}, z^{2}\right\rangle$ out of the upper hemisphere \mathcal{S} of the unit sphere.
(a) Let $\mathbf{G}=\left\langle e^{y}, 2 x e^{x^{2}}, 0\right\rangle$. Find a vector field $\mathbf{A}=\left\langle 0,0, A_{3}\right\rangle$ such that $\operatorname{curl}(\mathbf{A})=\mathbf{G}$.
(b) Use Stokes' Theorem to show that the flux of \mathbf{G} through \mathcal{S} is zero (i.e., show that $\iint_{\mathcal{S}} \mathbf{G} \cdot d \mathbf{S}=0$.)
(c) Calculate I. Hint: Use part (b) to show that $I=\iint_{\mathcal{S}}\left\langle 0,0, z^{2}\right\rangle \cdot d \mathbf{S}$.
(4) Use the Divergence Theorem to evaluate the flux $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\langle y, z, x\rangle$ and \mathcal{S} is the sphere $x^{2}+y^{2}+z^{2}=1$, oriented with outward-pointing normal vectors.
(5) Let \mathcal{W} be the region between the sphere of radius 4 and the cube of side lengths 1 , both centered at the origin. What is the flux though the boundary $\mathcal{S}=\partial \mathcal{W}$ of a vector field \mathbf{F} whose divergence has the constant value $\operatorname{div}(\mathbf{F})=-4$?

