Math 13 Homework \#8

Due Wednesday, May 22nd
(1) Evaluate the following vector surface integrals

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}
$$

for the given vector field \mathbf{F} and surface \mathcal{S}.
(a) $\mathbf{F}=\left\langle e^{z}, z, x\right\rangle, \mathcal{S}$ is given by $G(r, s)=(r s, r+s, r), 0 \leq r \leq 1,0 \leq s \leq 1$, oriented by $\mathbf{T}_{r} \times \mathbf{T}_{s}$.
(b) $\mathbf{F}=y^{2} \mathbf{i}+2 \mathbf{j}-x \mathbf{k}, \mathcal{S}$ is the portion of the plane $x+y+z=1$ in the octant $x, y, z \geq 0$, and oriented with upward-pointing normal vectors.
(2) Verify Green's Theorem for the following line integrals, by evaluating the integral in two different ways: directly, as a line integral over the specified curve \mathcal{C}, and also as the double integral over the region \mathcal{D} bounded by \mathcal{C}.
(a) $\oint_{\mathcal{C}} x y d x+y d y$, where \mathcal{C} is the unit circle, oriented clockwise.
(b) $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle x+y, x^{2}-y\right\rangle$ and \mathcal{C} is the boundary of the region enclosed by $y=x^{2}$ and $y=\sqrt{x}$ for $0 \leq x \leq 1$.
(3) Compute the area of the following regions in \mathbb{R}^{2} by writing it as the integral over the boundary.
(a) The triangle with vertices $(0,0),(1,1),(1,2)$.
(b) The ellipse given by $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$.
(4) Let \mathbf{F} be the vortex field

$$
\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle
$$

Show that

$$
\oint_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=\oint_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

where \mathcal{C}_{1} is the circle of radius R_{1} and \mathcal{C}_{2} is the circle of radius R_{2}, both centered at the origin, both oriented counterclockwise (Hint: Apply the general form of Green's Theorem to the region between \mathcal{C}_{1} and \mathcal{C}_{2}.)

