Math 13 Homework #8 Due Wednesday, May 22nd

(1) Evaluate the following vector surface integrals

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$$

for the given vector field \mathbf{F} and surface \mathcal{S} .

- (a) $\mathbf{F} = \langle e^z, z, x \rangle$, \mathcal{S} is given by $G(r, s) = (rs, r+s, r), 0 \leq r \leq 1, 0 \leq s \leq 1$, oriented by $\mathbf{T}_r \times \mathbf{T}_s$.
- (b) $\mathbf{F} = y^2 \mathbf{i} + 2\mathbf{j} x\mathbf{k}$, \mathcal{S} is the portion of the plane x + y + z = 1 in the octant $x, y, z \ge 0$, and oriented with upward-pointing normal vectors.
- (2) Verify Green's Theorem for the following line integrals, by evaluating the integral in two different ways: directly, as a line integral over the specified curve C, and also as the double integral over the region D bounded by C.
 - (a) $\oint_{\mathcal{C}} xydx + ydy$, where \mathcal{C} is the unit circle, oriented clockwise.
 - (b) $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle x + y, x^2 y \rangle$ and \mathcal{C} is the boundary of the region enclosed by $y = x^2$ and $y = \sqrt{x}$ for $0 \le x \le 1$.
- (3) Compute the area of the following regions in R² by writing it as the integral over the boundary.
 - (a) The triangle with vertices (0,0), (1,1), (1,2).
 - (b) The ellipse given by $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1.$
- (4) Let \mathbf{F} be the vortex field

$$\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle.$$

Show that

$$\oint_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r},$$

where C_1 is the circle of radius R_1 and C_2 is the circle of radius R_2 , both centered at the origin, both oriented counterclockwise (Hint: Apply the general form of Green's Theorem to the region between C_1 and C_2 .)