Math 13 Homework \#7

Due Wednesday, May 15th
(1) For each of the following parameterizations given by G, calculate $\mathbf{T}_{u}, \mathbf{T}_{v}$, and $\mathbf{N}(u, v)$ for the parameterized surface at the given point.
(a) $G(u, v)=\left(u^{2}-v^{2}, u+v, u-v\right) ; \quad u=2, v=3$.
(b) $G(r, \theta)=\left(r \cos (\theta), r \sin (\theta), 1-r^{2}\right) ; \quad r=1 / 2, \theta=\pi / 4$.
(2) For each of the following functions f and surfaces S, calculate

$$
\iint_{S} f(x, y, z) d S
$$

(a) $G(u, v)=\left(u, v^{3}, u+v\right), \quad 0 \leq u \leq 1,0 \leq v \leq 1 ; \quad f(x, y, z)=y$.
(b) $z=4-x^{2}-y^{2}, \quad 0 \leq z \leq 3 ; \quad f(x, y, z)=x^{2} /(4-z)$.
(3) Find the surface area of the following surfaces:
(a) The part of the cone $x^{2}+y^{2}=z^{2}$ between the planes $z=2$ and $z=5$.
(b) The portion of the plane $2 x+3 y+4 z=28$ lying above the rectangle $1 \leq x \leq 3$, $2 \leq y \leq 5$ in the $x y$-plane.
(4) Show that the surface area of the portion of the sphere of radius R between two horizontal planes $z=a$ and $z=b$ is equal to the surface area of the corresponding portion of the circumscribed cylinder of radius R between $z=a$ and $z=b$.

