Math 13 Homework #6 Due Wednesday, May 8th

- (1) Compute the scalar line integrals $\int_C f(x, y, z) ds$ for the following functions f and curves C.
 - (a) f(x, y, z) = 3x 2y + z; C is given by $\mathbf{r}(t) = (2 + t, 2 t, 2t)$ for $0 \le t \le 1$.
 - (b) $f(x, y, z) = xe^{z^2}$; C is the triangle with vertices (0, 0, 1), (0, 2, 0) and (1, 1, 1) traversed in that order, starting at (0, 0, 1).
 - (c) $f(x, y, z) = x^2 + y^2 + 3z$ where C is the unit circle in the plane z = 1, traversed counterclockwise.
- (2) Evaluate the following line integrals.
 - (a) $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle e^{y-x}, e^{2x} \rangle$ and C is the line segment going from (0, 0) to (2, 2).
 - (b) $\int_C z dx + x^2 dy + y dz$, $\mathbf{r}(t) = (\cos(t), \tan(t), t))$ for $0 \le t \le \frac{\pi}{4}$.
- (3) Evaluate

$$\int_C 2xyzdx + x^2zdy + x^2ydz,$$

where C is parameterized by $\mathbf{r}(t) = (t, t, 0), 0 \le t \le 1$.

How would your answer change if $\mathbf{r}(t)$ was replaced by $\mathbf{r}(t) = (1 - t, 1 - t, t^2 - t)$?

(4) Let
$$\mathbf{F} = \left\langle \frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right\rangle$$
, and let $\mathcal{D} = \{(x, y) : (x, y) \neq (0, 0)\}.$

- (a) Is \mathcal{D} simply connected?
- (b) Show that **F** satisfies the cross-partial condition; i.e. $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$.
- (c) Show that \mathbf{F} is conservative on \mathcal{D} by finding a potential function.
- (d) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is any smooth curve from (1,0) to (2,2).