Math 13 Homework \#5

Due Wednesday, May 1st
(1) Find a mapping G that maps the disk $u^{2}+v^{2} \leq 1$ onto the interior of the ellipse $(x / a)^{2}+(y / b)^{2} \leq 1$. Then use the Change of Variables formula to show that the area of the ellipse is $\pi a b$.
(2) Let F be the map from the $x y$-plane to the $u v$-plane defined by

$$
F(x, y)=(x+y, y-2 x),
$$

and let G be its inverse.
(a) Compute $\operatorname{Jac}(G)$.
(b) Sketch the domain $\mathcal{D}=\{(x, y): 1 \leq x+y \leq 4,-4 \leq y-2 x \leq 1\}$.
(c) Compute

$$
\iint_{\mathcal{D}} e^{x+y} d x d y
$$

using the Change of Variables Formula with the map G.
(3) Calculate $\operatorname{div}(\mathbf{F})$ and $\operatorname{curl}(\mathbf{F})$ for the following functions F.
(a) $\mathbf{F}=\left\langle x y, y z, y^{2}-x^{3}\right\rangle$
(b) $\mathbf{F}=\sin (x+z) \mathbf{i}-y e^{x z} \mathbf{k}$
(4) Show the following identities, supposing that all necessary partial derivatives exist and are continuous:
(a) $\operatorname{div} \operatorname{curl}(\mathbf{F})=0$,
(b) $\operatorname{div}(\mathbf{F} \times \mathbf{G})=G \cdot \operatorname{curl}(\mathbf{F})-\mathbf{F} \cdot \operatorname{curl}(\mathbf{G})$.
(5) Find a potential function for the following vector fields \mathbf{F} or show that \mathbf{F} is not conservative.
(a) $\mathbf{F}=\langle x, y\rangle$,
(b) $\mathbf{F}=\langle y, x\rangle$,
(c) $\mathbf{F}=\langle y z, x z, y\rangle$.

