Math 13 Homework #5 Due Wednesday, May 1st

- (1) Find a mapping G that maps the disk $u^2 + v^2 \leq 1$ onto the interior of the ellipse $(x/a)^2 + (y/b)^2 \leq 1$. Then use the Change of Variables formula to show that the area of the ellipse is πab .
- (2) Let F be the map from the xy-plane to the uv-plane defined by

$$F(x,y) = (x+y, y-2x),$$

and let G be its inverse.

- (a) Compute $\operatorname{Jac}(G)$.
- (b) Sketch the domain $\mathcal{D} = \{(x, y) : 1 \le x + y \le 4, -4 \le y 2x \le 1\}.$
- (c) Compute

$$\iint_{\mathcal{D}} e^{x+y} \ dxdy$$

using the Change of Variables Formula with the map G.

(3) Calculate $\operatorname{div}(\mathbf{F})$ and $\operatorname{curl}(\mathbf{F})$ for the following functions F.

(a)
$$\mathbf{F} = \langle xy, yz, y^2 - x^3 \rangle$$

(b)
$$\mathbf{F} = \sin(x+z)\mathbf{i} - ye^{xz}\mathbf{k}$$

- (4) Show the following identities, supposing that all necessary partial derivatives exist and are continuous:
 - (a) div curl(\mathbf{F}) = 0,
 - (b) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = G \cdot \operatorname{curl}(\mathbf{F}) \mathbf{F} \cdot \operatorname{curl}(\mathbf{G}).$
- (5) Find a potential function for the following vector fields \mathbf{F} or show that \mathbf{F} is not conservative.

(a)
$$\mathbf{F} = \langle x, y \rangle$$
,

(b)
$$\mathbf{F} = \langle y, x \rangle$$
,

(c) $\mathbf{F} = \langle yz, xz, y \rangle$.