Math 13 Homework \#4

Due Wednesday, April 24th
(1) Find a linear mapping G that maps $[0,1] \times[0,1]$ to the parallelogram in the $x y$-plane spanned by the vectors $\langle-2,5\rangle$ and $\langle 1,7\rangle$.
(2) Let $G(u, v)=(u+v, u-v)$.
(a) What is the slope of the line given by the image of the line $v=m u+b$ under the map G for $m=0 ? m=2$?
(b) For what value of m is the image of the line $v=m u+b$ a vertical line? A horizontal line?
(c) Compute the Jacobian of G.
(3) Let \mathcal{D} be the image of $\mathcal{R}=[1,4] \times[1,4]$ under the map $G(u, v)=\left(u^{2} / v, v^{2} / u\right)$.
(a) Compute the Jacobian of G.
(b) Sketch \mathcal{D}.
(c) Use the Change of Variables formula to compute $\operatorname{Area}(D)$ and

$$
\iint_{\mathcal{D}}(x+y) d x d y
$$

(4) Calculate the integral of $f(x, y)=e^{3 x-2 y}$ over the parallelogram with vertices $(0,0)$, $(1,3),(5,1)$ and $(6,4)$.

