Math 13 Homework #3 Due Wednesday, April 17th

- (1) Let \mathcal{W} be the region bounded below by the plane z = 1 and above by the sphere $x^2 + y^2 + z^2 = 9$.
 - (a) Use cylindrical coordinates to find the volume of \mathcal{W} .
 - (b) Use spherical coordinates to find the volume of \mathcal{W} .
- (2) Let \mathcal{W} be a sphere S of radius a from which a central cylinder of radius b has been removed, where 0 < b < a.
 - (a) Sketch the region \mathcal{W} .
 - (b) Calculate the height and volume of the cylinder.
 - (c) Calculate the volume of just the sphere S as a triple integral using spherical coordinates.
 - (d) Compute the volume of \mathcal{W} .
- (3) Let \mathcal{W} be the region within the cylinder $x^2 + y^2 = 2$ between z = 0 and the cone $z = \sqrt{x^2 + y^2}$. Calculate the integral of $f(x, y, z) = x^2 + y^2$ over \mathcal{W} , using spherical coordinates.
- (4) Calculate the center of mass of the region bounded by $y^2 = -x + 4$ and x = 0, and mass density $\delta(x, y) = x$.
- (5) Calculate the moment of inertia I_z of the box $\mathcal{W} = [-a, a] \times [-a, a] \times [0, H]$ assuming \mathcal{W} has total mass M in kg, and uniform mass density δ in kg / m³.