Math 13 Homework \#3

Due Wednesday, April 17th
(1) Let \mathcal{W} be the region bounded below by the plane $z=1$ and above by the sphere $x^{2}+y^{2}+z^{2}=9$.
(a) Use cylindrical coordinates to find the volume of \mathcal{W}.
(b) Use spherical coordinates to find the volume of \mathcal{W}.
(2) Let \mathcal{W} be a sphere S of radius a from which a central cylinder of radius b has been removed, where $0<b<a$.
(a) Sketch the region \mathcal{W}.
(b) Calculate the height and volume of the cylinder.
(c) Calculate the volume of just the sphere S as a triple integral using spherical coordinates.
(d) Compute the volume of \mathcal{W}.
(3) Let \mathcal{W} be the region within the cylinder $x^{2}+y^{2}=2$ between $z=0$ and the cone $z=\sqrt{x^{2}+y^{2}}$. Calculate the integral of $f(x, y, z)=x^{2}+y^{2}$ over \mathcal{W}, using spherical coordinates.
(4) Calculate the center of mass of the region bounded by $y^{2}=-x+4$ and $x=0$, and mass density $\delta(x, y)=x$.
(5) Calculate the moment of inertia I_{z} of the box $\mathcal{W}=[-a, a] \times[-a, a] \times[0, H]$ assuming \mathcal{W} has total mass M in kg , and uniform mass density δ in $\mathrm{kg} / \mathrm{m}^{3}$.

