Math 13 Homework \#2

Due Wednesday, April 10th
(1) Evaluate the integral

$$
\iiint_{\mathcal{B}} \frac{x}{(y+z)^{2}} d V
$$

where $\mathcal{B}=[0,2] \times[2,4] \times[-1,1]$.
(2) Let S be the solid in \mathbb{R}^{3} bounded by $y=x^{2}, x=y^{2}$ and $z=x+y+5$ and $z=0$.
(a) Sketch the projections onto the $x y-$ and $y z$-planes.
(b) Compute the volume of S.
(3) At a given time, the temperature at any point in a cave (viewed in \mathbb{R}^{3}) is given by the equation $T(x, y, z)=\frac{x y+z}{10}$ in centigrade. Compute the average temperature in the section of the cave in the first octant, bounded by $z=9-x^{2}$ and $x=y$.
(4) Sketch the domain of integration for the integral

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y
$$

and compute the integral by changing to polar coordinates.
(5) Sketch the domain of integration for the integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d y d x
$$

and compute the integral by changing to polar coordinates.
(6) Let \mathcal{W} be the region in \mathbb{R}^{3} given by $x^{2}+y^{2} \leq 1, x \geq 0,0 \leq z \leq 2$. For the function $f(x, y, z)=x z$,
(a) Sketch the domain of integration.
(b) Set up the integral

$$
\iiint_{\mathcal{W}} f(x, y, z) d V
$$

in terms of x, y, and z.
(c) Use cylindrical coordinates to evaluate the integral.

