Math 13, Multivariable Calculus
 Practice problems Integration

1. Evaluate the following integral:

$$
\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y
$$

2. In evaluating a double integral over a region D , a sum of iterated integrals was obtained as follows:

$$
\iint_{D} f(x, y) d A=\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) d x d y+\int_{2}^{4} \int_{y-2}^{\sqrt{y}} f(x, y) d x d y
$$

Sketch the region D and express the double integral as an iterated integral with reversed order of integration.
3. Evaluate the triple integral $\iiint_{T} x y z d V$, where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(1,1,0),(1,0,1)$.
4. Sketch the solid whose volume is given by the following iterated integral, and compute the value of that volume:

$$
\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} d x d z d y
$$

5. Let E be the three-dimensional region lying below the plane $z=3-2 y$ and above the paraboloid $z=x^{2}+y^{2}$.
(a) Sketch the projections onto the xy- and yz-planes.
(b) Sketch a typical cross section parallel to the xz-plane (with y constant).
(c) Sketch the region E.
(d) Set up the limits of integration (but do not integrate!) for the integral

$$
\iiint_{E} f(x, y, z) d V
$$

with respect to $d z d x d y$ and $d x d y d z$.

