Final Review

Melanie Dennis

Dartmouth College
Math13

May 30, 2018

Change of Variables

(1) Find an appropriate transformation $G(u, v)$
(2) Find your new domain \mathcal{D}^{*}
(3) Find the scaling factor (the Jacobian)
(4) Plug in to the change of variable equation:

$$
\iint_{\mathcal{D}} f(x, y) d A=\iint_{\mathcal{D}^{*}} f(G(u, v))|\operatorname{Jac}(G)| d u d v
$$

Line Integrals

(1) Find an appropriate parametrization $\mathbf{r}(t)$
(2) Find your new domain $a \leq t \leq b$
(3) Find the scaling factor $\left(\mathbf{r}^{\prime}(t)\right)$
(4) Plug in to the line integral equation:

$$
\begin{aligned}
\int_{\mathcal{C}} f(x, y, z) d r & =\int_{a}^{b} f(\mathbf{r}(t))\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
\int_{\mathcal{C}} \mathbf{F}(x, y, z) \cdot d \mathbf{r} & =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
\end{aligned}
$$

Surface Integrals

(1) Find an appropriate parametrization $G(u, v)$
(2) Find your new domain \mathcal{D} (called parameter domain)

3 Find the scaling factor $(\mathbf{N}(u, v))$
(4) Plug in to the surface integral equation:

$$
\begin{aligned}
& \iint_{\mathcal{S}} f(x, y, z) d S=\iint_{\mathcal{D}} f(G(u, v))\|\mathbf{N}\| d u d v \\
& \iint_{\mathcal{S}} \mathbf{F}(x, y, z) \cdot d \mathbf{S}=\iint_{\mathcal{D}} \mathbf{F}(G(u, v)) \cdot \mathbf{N} d u d v
\end{aligned}
$$

Green's Theorem

$$
\int_{\mathcal{C}} F_{1} d x+F_{2} d y=\iint_{\mathcal{D}}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
$$

where \mathcal{C} is the (closed) boundary of \mathcal{D} and is oriented such that, when walking around \mathcal{C}, the shape \mathcal{D} is on your left.

Stokes' Theorem

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}
$$

where \mathcal{C} is the (closed) boundary of \mathcal{S} and is oriented such that, when walking around \mathcal{C} with your head pointed in the direction of the normal to the surface, the surface \mathcal{S} is on your left.

Divergence Theorem

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{\mathcal{W}} \operatorname{div}(\mathbf{F}) d V
$$

where \mathcal{S} is the (closed) boundary of \mathcal{W} oriented with outward pointing normals.

