
Math 13 Challenge Problem Solutions
Melanie Dennis

1. Let D be the domain bounded by y = x2 + 1 and y = 2. Prove the inequality 4
3
≤
∫∫
D(x2 +

y2)dA ≤ 20
3

.

Solution: Recall that if m is the smallest value of the function f over a domain and M is the
largest value, then mArea(D) ≤

∫∫
D f(x, y)dA ≤ MArea(D). To find Area(D), we look at∫ 1

−1

∫ 2

x2+1
dydx =

∫ 1

−1 1−x2dx = (x− 1
3
x3)|1−1 = 4

3
. Over this domain, x2 + y2 is smallest when

x = 0, y = 1, so m = 1, and largest when x = 1, y = 2, so M = 5.

2. Verify the Mean Value Theorem for f(x, y) = ex−y on the triangle bounded by y = 0, x = 1,
and y = x.

Solution: We want to find a point P = (x0, y0) such that ex0−y0Area(D) =
∫∫
D e

x−ydA. If we

do the integral, we get
∫ 1

0

∫ x
0
ex−ydydx =

∫ 1

0
ex − 1dx = (e− 1)− 1 = e− 2. The area of D is

1
2
. Then we’re trying to find (x0, y0) such that 1

2
ex0−y0 = e− 2. Multiplying by 2 and taking

the natural log, we get x0 − y0 = ln(2e− 4). We just need that (x0, y0) is in the triangle. If,
for instance, we let y0 = .5, then x0 = ln(2e − 4) + .5 ≈ .8623. This point is in our triangle,
so we have verified that there exists a point P ∈ D such that ex0−y0Area(D) =

∫∫
D e

x−ydA.

3. Is it true that
∫∫
D f(x)g(y)dydx =

(∫ b
a
f(x)dx

)(∫ h2(b)
h1(a)

g(y)dy
)

for vertically simple regions?

Why or why not?

Solution: We cannot do this. Try for example, working out
∫ 3

1

∫ √x
1/x

2x2ydydx = 18, but∫ 3

1
2x2dx

∫ √3
1

ydy = 2
3
x3|31 12y

2|
√
3

1 =
(
18− 2

3

) (
3
2
− 1

2

)
6= 18.

4. Use integrals to calculate the volume of a cone of base radius r and height h.

Solution: If we let ρ be the radius of any cross-section of the cone, then the volume of the cone
is
∫ h
z=0

πρ2dz. Now we just need to express ρ in terms of z. The side of the cone sweeps out in
a triangle that follows the line in the xz plane from (0, h) to (r, 0), so we have z = (−h/r)x+h.
Here, if we are along this line, x = ρ, so we can solve for ρ to get ρ = (h− z)(r/h). Then our

integral becomes
∫ h
0
π(h− z)2(r/h)2dz = −r2π

h2

(
1
3
(h− z)3

)
|h0 = −r2π

h2

(
0− 1

3
h3
)

= r2hπ
3

.

5. Find the volume of the region contained in the intersection of the cylinders x2 + y2 ≤ a2 and
x2 + z2 ≤ a2.

Solution: If we just find the volume in the first octant, then we can multiply that by 8 to

get the total volume. In the first octant, the integral becomes
∫ a
0

∫ √a2−x2
0

∫ √a2−x2
0

dzdydx =∫ a
0

∫ √a2−x2
0

√
a2 − x2dydx =

∫ a
0

(a2 − x2)dx = a3 − 1
3
a3 = 2

3
a3. Then after we multiply this by

8, we get 16
3
a3.

6. Prove that
∫ x
0

∫ t
0
F (u)dudt =

∫ x
0

(x− u)F (u)du.

Solution: Note that our variables here are u and t, and x is a constant. If we switch the
bounds on the left hand side, then we get

∫ x
0

∫ x
u
F (u)dtdu. Since F (u) is a constant with

respect to t, we can do the first integral to get
∫ x
0

(F (u)t)|xudu =
∫ x
0

(x− u)F (u)du.

7. Find the volume of the region inside both the cylinder x2+y2 = 1 and the sphere x2+y2+z2 =
4.



Solution: If we evaluate this in cylindrical coordinates, since we need to be inside the cylinder,

r must go from 0 to 1 and θ from 0 to 2π. Then the integral is
∫ 2π

0

∫ 1

0

∫ √4−r2
−
√
4−r2 rdzdrdθ =∫ 2π

0

∫ 1

0
2
√

4− r2rdrdθ. If we do u substitution and let u = 4 − r2, then du = −2rdr and

our r bound become 4 to 3, so the integral becomes
∫ 2π

0

∫ 3

4
u1/2(−1)dudθ =

∫ 2π

0
2
3
u3/2|34dθ =∫ 2π

0
2
3
(8−

√
27)dθ = 4π

3
(8−

√
27).

8. Find the volume of an inverted cone centered at the origin with height H and largest radius
R.

We already solved this problem in one way in problem 4. This time, let’s use spherical co-
ordinates. Here, the vertex of the cone is at the origin, and we can call the angle from the
z axis to the cone φ′. Solving for φ′ will give us the upper bound for φ. Looking at the
triangle formed with the z axis, we see that tan(φ′) = R

H
, so φ′ = tan−1

(
R
H

)
. We also see

that the maximum ρ is the hypotenuse of this triangle, so we get that ρ = H
cos(φ)

. Then our

integral becomes
∫ 2π

0

∫ tan−1(R/H)

0

∫ H/ cos(φ)
0

ρ2 sin(φ)dρdφdθ = 2π
∫ tan−1(R/H)

0
1
3

H3

cos3(φ)
sin(φ)dφ =

2π
∫ tan−1(R/H)

0
1
3

H3

cos2(φ)
tan(φ)dφ = 2π

∫ tan−1(R/H)

0
1
3
H3 sec2(φ) tan(φ)dφ. If we do u substitu-

tion, letting u = tan(φ) and du = sec2(φ), then when we adjust our φ bounds, we have that
when φ = 0, u = tan(0) = 0 and when φ = tan−1(R/H), u = tan(tan−1(R/H)) = R/H.

Then our integral becomes 2π
∫ R/H
0

1
3
H3udu = πHR2

3
.


