Divergence Theorem

Melanie Dennis

Dartmouth College
Math13
May 25, 2018

Divergence Theorem Practice Problems

(1) Evaluate $\iint_{\mathcal{S}}\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle \cdot d \mathbf{S}$ where \mathcal{S} is the boundary of the cylinder $x^{2}+y^{2} \leq 4,0 \leq z \leq 3$.
(2) Let $\mathbf{F}=\langle x, y, z\rangle$ and \mathcal{W} be a region with a smooth boundary \mathcal{S}. Show that $\operatorname{Volume}(\mathcal{W})=\frac{1}{3} \iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}$.
(3) Let \mathcal{W} be the region bounded by $x+2 y+4 z=12$ and the coordinate planes in the first octant. Set up (don't evaluate) the triple integral to find the flux of $\left\langle x^{2}-z^{2}, e^{z^{2}}-\cos (x), y^{3}\right\rangle$ out of \mathcal{W}.

Challenge Problems

(1) Use Problem 2 from above to find the volume of the unit ball.
(2) Let \mathcal{W} be the pyramid with vertices $(0,0,1),(0,0,0),(1,0,0)$, $(0,1,0)$, and $(1,1,0)$. Find the flux of $\left\langle x^{2} y, 3 y^{2} z, 9 z^{2} x\right\rangle$ out of \mathcal{W}.

