Stokes' Theorem

Melanie Dennis
Dartmouth College
Math13

May 23, 2018

Stokes' Theorem Practice Problems

(1) Use Stokes' Theorem to find $\oint_{\mathcal{C}}\langle y,-2 z, 4 x\rangle$ where \mathcal{C} is $x+2 y+3 z=1$ in the first octant oriented counterclockwise.

Challenge Problems

(1) Let I be the flux of $\mathbf{F}=\left\langle e^{y}, 2 x e^{x^{2}}, z^{2}\right\rangle$ through the upper hemisphere \mathcal{S} of the unit sphere.
(1) Let $\mathbf{G}=\left\langle e^{y}, 2 x e^{x^{2}}, 0\right\rangle$. Find a vector field \mathbf{A} such that $\operatorname{curl}(\mathbf{A})=\mathbf{G}$.
(2) Use Stokes' Theorem to show $\iint_{\mathcal{S}} \mathbf{G} \cdot d \mathbf{S}=0$.
(3) Calculate I. Hint: Use part (2) to show that $I=\iint_{\mathcal{S}}\left\langle 0,0, z^{2}\right\rangle \cdot d \mathbf{S}$.

