Stokes' Theorem

Melanie Dennis
Dartmouth College
Math13

May 21, 2018

http://tutorial.math.lamar.edu/Classes/CalcIII/StokesTheorem.aspx

https://en.wikipedia.org/wiki/Pair_of_pants_(mathematics)

https://simple.wikipedia.org/wiki/Sphere

Dartmouth

Dartmouth

Stokes' Theorem Practice Problems

(1) Use line integrals to find $\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}$ where $\mathbf{F}=\langle y z, x z, x y\rangle$ and \mathcal{S} is the cylinder $x^{2}+y^{2}=1$ with $1 \leq z \leq 4$ with outward-pointing normal vectors.
(2) Use Stokes' Theorem to find $\oint_{\mathcal{C}}\langle y z, x y, x z\rangle \cdot d \mathbf{r}$ where \mathcal{C} is the square with vertices $(0,0,2),(1,0,2),(1,1,2)$, and $(0,1,2)$ oriented counterclockwise.

Challenge Problems

(1) Use line integrals to find $\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}$ where $\mathbf{F}=\left\langle y z,-x z, z^{3}\right\rangle$ and \mathcal{S} is the cone $z=\sqrt{x^{2}+y^{2}}$ with $1 \leq z \leq 3$ with upward-pointing normal vectors.
(2) Let $\mathbf{F}=\left\langle y,-x, z x^{3} y^{2}\right\rangle$. Evaluate $\iint_{\mathcal{S}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d A$ where \mathcal{S} is the surface defined by $x^{2}+y^{2}+z^{2}=1, z \leq 0$ oriented with normal pointing outward.

