Stokes' Theorem

Melanie Dennis

Dartmouth College Math13

May 21, 2018

https://en.wikipedia.org/wiki/Pair_of_pants_(mathematics)

https://simple.wikipedia.org/wiki/Sphere

Stokes' Theorem Practice Problems

• Use line integrals to find $\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F} = \langle yz, xz, xy \rangle$ and \mathcal{S} is the cylinder $x^2 + y^2 = 1$ with $1 \le z \le 4$ with outward-pointing normal vectors.

② Use Stokes' Theorem to find $\oint_{\mathcal{C}} \langle yz, xy, xz \rangle \cdot d\mathbf{r}$ where \mathcal{C} is the square with vertices (0, 0, 2), (1, 0, 2), (1, 1, 2), and (0, 1, 2) oriented counterclockwise.

Challenge Problems

- Use line integrals to find $\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F} = \langle yz, -xz, z^3 \rangle$ and \mathcal{S} is the cone $z = \sqrt{x^2 + y^2}$ with $1 \le z \le 3$ with upward-pointing normal vectors.