Vector Line Integrals

Melanie Dennis

Dartmouth College Math13

May 2, 2018

Vector Line Integral Practice Problems

- Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle 4, y \rangle$ and \mathcal{C} is the quarter circle $x^2 + y^2 = 1$ with $x \leq 0, y \leq 0$ oriented counterclockwise.
- ② Compute ∫_C **F** · d**r** where **F** = $\langle e^{y-x}, e^{2x} \rangle$ and C is the piecewise path from (1,1) to (2,2) to (0,2).

Challenge Problems

- Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \left\langle \frac{-y}{(x^2+y^2)^2}, \frac{x}{(x^2+y^2)^2} \right\rangle$ and \mathcal{C} is the circle with radius R centered at the origin and oriented counterclockwise.
- **2** Let C be a curve and T be the unit tangent vector. What is $\int_{C} \mathbf{T} \cdot d\mathbf{r}$?
- Let C_1 and C_2 be two paths with the same endpoints and C be the curve that first moves along C_1 and then moves along C_2 in the opposite direction. Show that for any vector field \mathbf{F} , if $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$, then $\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0$.