Vector Line Integrals

Melanie Dennis

Dartmouth College
Math13

May 2, 2018

Vector Line Integral Practice Problems

(1) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\langle 4, y\rangle$ and \mathcal{C} is the quarter circle $x^{2}+y^{2}=1$ with $x \leq 0, y \leq 0$ oriented counterclockwise.
(2) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle e^{y-x}, e^{2 x}\right\rangle$ and \mathcal{C} is the piecewise path from $(1,1)$ to $(2,2)$ to $(0,2)$.

Challenge Problems

(1) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle\frac{-y}{\left(x^{2}+y^{2}\right)^{2}}, \frac{x}{\left(x^{2}+y^{2}\right)^{2}}\right\rangle$ and \mathcal{C} is the circle with radius R centered at the origin and oriented counterclockwise.
(2) Let \mathcal{C} be a curve and \mathbf{T} be the unit tangent vector. What is $\int_{\mathcal{C}} \mathbf{T} \cdot d \mathbf{r}$?
(3) Let \mathcal{C}_{1} and \mathcal{C}_{2} be two paths with the same endpoints and \mathcal{C} be the curve that first moves along \mathcal{C}_{1} and then moves along \mathcal{C}_{2} in the opposite direction. Show that for any vector field \mathbf{F}, if $\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}$, then $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=0$.

