Green's Theorem

Melanie Dennis

Dartmouth College Math13

May 16, 2018

Green's Theorem Practice Problems

- Let C be the rectangle with vertices (1, 1), (3, 1), (1, 4), and (3, 4). Evaluate $\oint_C (\ln(x) + y) dx - x^2 dy$.
- Find ∮_C F · dr where F = $\langle x + y, x^2 y \rangle$ and C is the boundary of the region enclosed by $y = x^2$ and $y = \sqrt{x}$ for $0 \le x \le 1$.

Challenge Problems

- Use line integrals to find the area of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- ❷ Suppose that f is a function such that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ over the region \mathcal{D} . Prove $\int_{\partial \mathcal{D}} \frac{\partial f}{\partial y} dx \frac{\partial f}{\partial x} dy = 0$.
- Let curl_z(**F**) be the *z* component of the curl. Show $\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \operatorname{curl}_{z}(\mathbf{F}) dA.$

