Green's Theorem

Melanie Dennis
Dartmouth College
Math13

May 16, 2018

Green's Theorem Practice Problems

(1) Let \mathcal{C} be the rectangle with vertices $(1,1),(3,1),(1,4)$, and $(3,4)$. Evaluate $\oint_{\mathcal{C}}(\ln (x)+y) d x-x^{2} d y$.
(2) Find $\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle x+y, x^{2}-y\right\rangle$ and \mathcal{C} is the boundary of the region enclosed by $y=x^{2}$ and $y=\sqrt{x}$ for $0 \leq x \leq 1$.

Challenge Problems

(1) Use line integrals to find the area of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
(2) Suppose that f is a function such that $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$ over the region \mathcal{D}. Prove $\int_{\partial \mathcal{D}} \frac{\partial f}{\partial y} d x-\frac{\partial f}{\partial x} d y=0$.
(3) Let $\operatorname{curl}_{z}(\mathbf{F})$ be the z component of the curl. Show $\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{D}} \operatorname{curl}_{z}(\mathbf{F}) d A$.

