Vector Surface Integrals

Melanie Dennis

Dartmouth College Math13

May 14, 2018

Vector Surface Integrals Practice Problems

- Let S be the rectangle $0 \le y \le 2$, $0 \le z \le 3$ in the (y, z) plane with the normal pointing in the negative x direction. Find $\iint_{\mathcal{S}} \langle \sin(y), \sin(z), yz \rangle \cdot d\mathbf{S}$.
- Find $\iint_{\mathcal{S}} \langle x, y, e^z \rangle \cdot d\mathbf{S}$ where *S* is the cylinder $x^2 + y^2 = 4$ with 1 ≤ z ≤ 5 and an outward pointing normal.

Challenge Problems

- Let S be the cone $z^2 = x^2 + y^2$ with $x^2 + y^2 \le 4$, $z \ge 0$ with a downward-pointing normal. Find $\iint_{S} \langle xy, y, 0 \rangle \cdot d\mathbf{S}$.
- Prove that if S is the part of a graph z = g(x, y) lying over a domain D in the xy-plane with normal pointing upward, then

$$\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathcal{D}} \left(-F_1 \frac{\partial g}{\partial x} - F_2 \frac{\partial g}{\partial y} + F_3 \right) dx dy.$$

$$\blacksquare \text{ Dartmouth}$$