Vector Surface Integrals

Melanie Dennis

Dartmouth College
Math13

May 14, 2018

Vector Surface Integrals Practice Problems

(1) Let \mathcal{S} be the rectangle $0 \leq y \leq 2,0 \leq z \leq 3$ in the (y, z) plane with the normal pointing in the negative x direction. Find $\iint_{\mathcal{S}}\langle\sin (y), \sin (z), y z\rangle \cdot d \mathbf{S}$.
(2) Find $\iint_{\mathcal{S}}\left\langle x, y, e^{z}\right\rangle \cdot d \mathbf{S}$ where \mathcal{S} is the cylinder $x^{2}+y^{2}=4$ with $1 \leq z \leq 5$ and an outward pointing normal.

Challenge Problems

(1) Let \mathcal{S} be the cone $z^{2}=x^{2}+y^{2}$ with $x^{2}+y^{2} \leq 4, z \geq 0$ with a downward-pointing normal. Find $\iint_{\mathcal{S}}\langle x y, y, 0\rangle \cdot d \mathbf{S}$.
(2) Prove that if \mathcal{S} is the part of a graph $z=g(x, y)$ lying over a domain \mathcal{D} in the $x y$-plane with normal pointing upward, then

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathcal{D}}\left(-F_{1} \frac{\partial g}{\partial x}-F_{2} \frac{\partial g}{\partial y}+F_{3}\right) d x d y
$$

