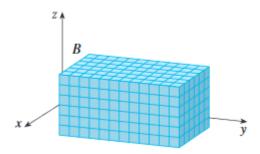
Triple Integrals

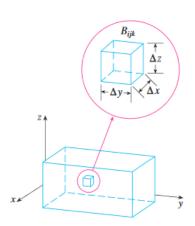
Melanie Dennis

Dartmouth College Math13

April 2, 2018



Double Integral Practice Problems


- ① Integrate f(x,y)=x over the region bounded by $y=x^2$ and y=x+2.
- **2** Sketch the domain of integration for $\int_0^4 \int_x^4 f(x,y) dy dx$, and then express as an iterated integral in the opposite order.
- § Find the volume of the region bounded by z=50-10y, z=10, y=0, and $y=4-x^2$.

Challenge Problems

- ① Let \mathcal{D} be the domain bounded by $y=x^2+1$ and y=2. Prove the inequality $\frac{4}{3} \leq \iint_{\mathcal{D}} (x^2+y^2) dA \leq \frac{20}{3}$.
- **②** Verify the Mean Value Theorem for $f(x,y) = e^{x-y}$ on the triangle bounded by y = 0, x = 1, and y = x.
- **3** Is it true that $\iint_{\mathcal{D}} f(x)g(y)dydx = \left(\int_a^b f(x)dx\right)\left(\int_{h_1(a)}^{h_2(b)} g(y)dy\right)$ for vertically simple regions? Why or why not?
- 4 Use integrals to calculate the volume of a cone of base radius r and height h.

Triple Integral Problems

- Evaluate $\iiint_{\mathcal{B}} \frac{x}{(y+z)^2} dV$ for the box $\mathcal{B} = [0,2] \times [2,4] \times [-1,1]$.
- **§** Set up the triple integral $\iiint_{\mathcal{W}} f(x,y,z) dV$ where \mathcal{W} is the region in the first octant above $z=y^2$ and below $z=8-2x^2-y^2$.

Challenge Problems

- **1** Find the volume of the region contained in the intersection of the cylinders $x^2 + y^2 \le a^2$ and $x^2 + z^2 \le a^2$.
- **2** Prove that $\int_0^x \int_0^t F(u) du dt = \int_0^x (x-u) F(u) du$.

