Double Integrals over General Regions

Melanie Dennis

Dartmouth College
Math13

March 30, 2018

Dartmouth

Dartmouth

Dartmouth

Practice Problems

(1) Integrate $f(x, y)=x$ over the region bounded by $y=x^{2}$ and $y=x+2$.
(2) Sketch the domain of integration for $\int_{0}^{4} \int_{x}^{4} f(x, y) d y d x$, and then express as an iterated integral in the opposite order.
(3) Find the volume of the region bounded by $z=50-10 y, z=10$, $y=0$, and $y=4-x^{2}$.

Challenge Problems

(1) Let \mathcal{D} be the domain bounded by $y=x^{2}+1$ and $y=2$. Prove the inequality $\frac{4}{3} \leq \iint_{\mathcal{D}}\left(x^{2}+y^{2}\right) d A \leq \frac{20}{3}$.
2 Verify the Mean Value Theorem for $f(x, y)=e^{x-y}$ on the triangle bounded by $y=0, x=1$, and $y=x$.
3 Is it true that $\iint_{\mathcal{D}} f(x) g(y) d y d x=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{h_{1}(a)}^{h_{2}(b)} g(y) d y\right)$ for vertically simple regions? Why or why not?
(4) Use integrals to calculate the volume of a cone of base radius r and height h.

