Double Integrals over General Regions

Melanie Dennis

Dartmouth College Math13

March 30, 2018

Practice Problems

1 Integrate f(x, y) = x over the region bounded by $y = x^2$ and y = x + 2.

- **②** Sketch the domain of integration for $\int_0^4 \int_x^4 f(x,y) dy dx$, and then express as an iterated integral in the opposite order.
- Find the volume of the region bounded by z = 50 10y, z = 10, y = 0, and $y = 4 x^2$.

Challenge Problems

- Let \mathcal{D} be the domain bounded by $y = x^2 + 1$ and y = 2. Prove the inequality $\frac{4}{3} \leq \iint_{\mathcal{D}} (x^2 + y^2) dA \leq \frac{20}{3}$.
- Verify the Mean Value Theorem for f(x, y) = e^{x-y} on the triangle bounded by y = 0, x = 1, and y = x.
- **③** Is it true that $\iint_{\mathcal{D}} f(x)g(y)dydx = \left(\int_a^b f(x)dx\right) \left(\int_{h_1(a)}^{h_2(b)} g(y)dy\right)$ for vertically simple regions? Why or why not?
- Use integrals to calculate the volume of a cone of base radius r and height h.