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We’ve learned quite a bit about double integrals in this class. They allow us to cal-
culate the volume of solids over various regions in the xy plane, and also have important
applications to physics and engineering. We will spend the next few classes studying triple
integrals. Although there are no new concepts which arise when moving from double inte-
grals to triple integrals, the complexity of the calculations does increase.

1. Introduction: Triple Integrals over rectangular prisms

Suppose we have a function of three variables f(x, y, z). We cannot visualize the graph
of this function anymore, although the graph of f does live in a four-dimensional space,
being the set of (x, y, z, w) satisfying w = f(x, y, z). Nevertheless, there are many situations
where functions of three variables occur naturally; for example, f(x, y, z) might represent
physical quantities such as temperature, density, pressure, etc.

When studying double integrals, we integrate over a domain D which is a subset of the
xy plane. Therefore, it should come as no surprise that when we evaluate a triple integral,
we do so over a domain E in xyz space. We quickly sketch how triple integrals are defined,
skipping a lot of the details since they are very similar to how these calculations were
performed when studying double integrals.

We began our study of double integrals by integrating only over rectangles R = [a, b]×
[c, d]. Therefore, we should begin by defining triple integrals over rectangular prisms R =
[x1, x2] × [y1, y2] × [z1, z2], which is the set of points (x, y, z) satisfying x1 ≤ x ≤ x2, y1 ≤
y ≤ y2, z1 ≤ z ≤ z2. If we subdivide this rectangular prism into lots of smaller rectangular
prisms, then we can calculate the Riemann sum∑

f(x∗, y∗, z∗)∆x∆y∆z,

which is supposed to represent the ‘four-volume’ of the four-dimensional solid over the
rectangular prism R and under the graph w = f(x, y, z). Even though we are unable to
visualize four dimensions, the analogy with the one and two dimensional cases should make
it clear that these Riemann sums should be approximating some sort of volume.

We take the limit of these Riemann sums as the subdivisions of R become finer and finer
(namely, as ∆x,∆y,∆z → 0), and call the limit, if it exists, the definite integral of f(x, y, z)
over R, and write it as ∫∫∫

R

f(x, y, z) dV.

The dV stands for a differential volume element.
In practice, we evaluate triple integrals by evaluating iterated integrals, just like how

we evaluate double integrals. For example, if we want to integrate f(x, y, z) over R =
[x1, x2]× [y1, y2]× [z1, z2], we might evaluate an iterated integral such as∫∫∫

R

f(x, y, z) dV =

∫ x2

x1

∫ y2

y1

∫ z2

z1

f(x, y, z) dz dy dx.

The order of integration is from the inside out, so we first integrate with respect to z,
and then with respect to y, and finally with respect to x. Under suitable hypotheses on
f(x, y, z), a higher dimensional version of Fubini’s Theorem is satisfied, which lets us reorder
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integration. These hypotheses are analogous to the hypotheses required in the two variable
case – f(x, y, z) should be continuous except possibly at a finite number of smooth surfaces.
Notice that there are now six possible orders of integration, as opposed to the two possible
orders in double integration. For instance, if we want to integrate with respect to z, and
then x, and then y, we would evaluate the iterated integral∫ y2

y1

∫ x2

x1

∫ z2

z1

f(x, y, z) dz dx dy

Example. Let R = [−1, 1]× [0, 2]× [0, 1]. Evaluate the triple integral∫∫∫
R

x2y + xez dV.

The integrand is continuous so we can evaluate an iterated integral using whatever order
we wish. In this example we will evaluate using the order z, y, and then x; if you wish you
can try any of the other five orders to verify that you get the same result.

With the order specified above, the iterated integral we want to evaluate is∫ 1

−1

∫ 2

0

∫ 1

0
x2y + xez dz dy dx.

Integrating with respect to z gives∫ 1

−1

∫ 2

0

(
x2yz + xez

∣∣∣z=1

z=0

)
dy dx =

∫ 1

−1

∫ 1

0
x2y + x(e− 1) dy dx.

Integrating this with respect to y gives∫ 1

−1

(
x2y2

2
+ xy(e− 1)

∣∣∣y=2

y=0

)
dx =

∫ 1

−1
2x2 + 2x(e− 1) dx.

Finally, evaluating the last integral gives∫ 1

−1
2x2 + 2x(e− 1) dx =

2x3

3
+ x2(e− 1)

∣∣∣1
−1

=
4

3
.

2. Triple integrals over more general regions

Just like how we defined double integrals over not only rectangles, but over more general
two-dimensional regions D, we can define triple integrals over three-dimensional regions E
whose boundary, which now will be a surface instead of a curve, is sufficiently ‘smooth’. In
virtually any situation we encounter, the region E will be defined by smooth functions, so
the boundary will also be smooth.

In practice, we evaluate double integrals over general regions D by describing D using
type I or type II inequalities (if possible), and then calculating iterated integrals∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx,

∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy.

When dealing with three-dimensional regions, we say a region E is type I if it can be written
as a subset of R3 defined by inequalities (x, y) ∈ D, g1(x, y) ≤ z ≤ g2(x, y), where D is some
subset of the xy plane. In other words, E can be thought of as a region in between the
graphs of two functions z = g1(x, y), z = g2(x, y) over the two-dimensional domain D. Then
the triple integral of f(x, y, z) over E is given by the expression
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∫∫∫
E

f(x, y, z) dV =

∫∫
D

∫ g2(x,y)

g1(x,y)
f(x, y, z) dz dA.

In other words, we integrate f(x, y, z) with respect to z first, and then evaluate the resulting
expression at the endpoints of integration z = g2(x, y), z = g1(x, y). The result will be some
function of x and y only, and we calculate the double integral of this function over D using
the methods we already know.

Example. Let E be the region above the triangle with vertices (0, 0), (1, 0), and (1, 1) in
the xy plane, and below the graph of z = x2 + y2. Evaluate the triple integral∫∫∫

E

y dV.

The description of E given to us in this problem is basically a description of the region
using type I inequalities. The domain D is the triangle in the xy plane described in the
question, and the inequalities on z are 0 ≤ z ≤ x2 + y2. Therefore, the triple integral is
equal to

∫∫
D

∫ x2+y2

0
y dz dA =

∫∫
D

yz
∣∣∣z=x2+y2

z=0
dA =

∫∫
D

y(x2 + y2) dA =

∫∫
D

x2y + y3 dA.

This is a double integral which we now evaluate in the usual way. We first describe D using
type I inequalities (notice the ambiguity in terminology here – we are now referring to type
I inequalities which describe a subset of the xy plane, not xyz space): 0 ≤ x ≤ 1, 0 ≤ y ≤ x.
Therefore, the double integral we want to evaluate is equal to∫ 1

0

∫ x

0
x2y + y3dy dx =

∫ 1

0

x2y2

2
+
y4

4

∣∣∣y=x

y=0
dx =

∫ 1

0

x4

2
+
x4

4
dx.

This integral is equal to ∫ 1

0

3x4

4
dx =

3x5

20

∣∣∣1
0

=
3

20
.

Notice that we could have also written the original iterated integral as∫ 1

0

∫ x

0

∫ x2+y2

0
y dz dy dx.

As a matter of fact, this is how we will usually write three-fold iterated integrals, instead
of writing a double integral and then a single integral.

Of course, as you might expect, there are analogous definitions for type II and type III
regions, and integrals over those regions can be calculated in a similar fashion to those
in the example above. If a region is simultaneously type I and type II, for example, it
is possible to interchange the order of integration, although in practice this is very hard
because you will need to draw the region of integration in three dimensions.

Example. Let E be the region defined by x, y, z ≥ 0, and x2 + y2/4 + z2/4 ≤ 1. Express
the triple integral of f(x, y, z) over the region E in the two orders of integration dz dy dx
and dx dy dz.
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The order of integration which is requested tells us the type of inequalities we should
use to describe the region E. For order dz dy dx, we begin by finding inequalities of the
form g1(x, y) ≤ z ≤ g2(x, y). If we sketch the region described above (which looks like an

ellipsoid), we see that we are looking at a region with z ≥ 0, z ≤
√

4− y2 − 4x2. (This is
also something you can find using algebra.)

We now need to determine the two-dimensional region D of the xy-plane that E is defined
over. (In other words, we want to describe the projection of E onto the xy-plane.) A bit
of thought shows that this region is defined by inequalities x, y ≥ 0, x2 + y2/4 ≤ 1. We
now describe this region using inequalities of the form h1(x) ≤ y ≤ h2(x), x1 ≤ x ≤ x2.

We quickly see that 0 ≤ y ≤
√

4− 4x2 and 0 ≤ 1. Altogether, this means that the triple
integral in the original question is equal to

∫ 1

0

∫ √4−4x2

0

∫ √4−y2−4x2

0
f(x, y, z) dz dy dx.

For the order of integration dx dy dz, we carry out an identical analysis with the requested
order. For instance, inequalities on x are given by 0 ≤ x ≤

√
1− y2/4− z2/4, and the

region D in the yz-plane which E sits over is described by 0 ≤ y, z, y2 + z2 ≤ 4. Therefore,
the triple integral above is also equal to∫ 2

0

∫ √4−z2
0

∫ √1−y2/4−z2/4

0
f(x, y, z) dx dy dz.

3. Applications of triple integrals

All the applications of single and double integrals still hold true for triple integrals. For
example, the volume of E is given by

V (E) =

∫∫∫
E

dV.

The average value of the function f(x, y, z) over E is given by

1

V (E)

∫∫∫
E

f(x, y, z) dV.

If E represents the volume filled in by some three dimensional solid, and ρ(x, y, z) is the
density at point (x, y, z), then the mass of the solid is given by

m =

∫∫∫
E

ρ(x, y, z) dV.

The coordinates of the center of mass, (x, y, z), are given by

x =
1

m

∫∫∫
E

xρ(x, y, z) dV, y =
1

m

∫∫∫
E

yρ(x, y, z) dV, z =
1

m

∫∫∫
E

zρ(x, y, z) dV.

The moment of inertia about the x-axis is given by

Ix =

∫∫∫
E

(y2 + z2)ρ(x, y, z) dV,

with symmetrical formulas for Iy, Iz.
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Example. Use a triple integral to calculate the volume of a tetrahedron with vertices at
(2, 0, 0), (0, 1, 0), (0, 0, 3), and (0, 0, 0).

A quick sketch of this tetrahedron shows that it is bounded below by a triangle on the xy
plane, with vertices at (0, 0), (2, 0), (0, 1), and above by a plane. We begin by determining
a formula for this plane. If we wanted to, we could form two vectors on the plane and
then take the cross product, but in this case there is actually a faster way to determine the
equation of the plane. We know the equation of the plane has the form ax+by+cz = d, for
some scalars a, b, c, d. Since (2, 0, 0), (0, 1, 0), (0, 0, 3) lie on this plane, these scalars satisfy
the equalities

2a = d, b = d, 3z = d.

Therefore, we might choose a = 3, b = 6, z = 2, d = 6, and we find an equation 3x+6y+2z =
6. As a function of z, this is z = 3− 3x/2− 3y.

The triangle D which bounds the lower part of the tetrahedron is given by inequalities
0 ≤ x ≤ 2, 0 ≤ y ≤ 1 − x/2. Therefore, the volume of the tetrahedron is given by the
iterated integral ∫ 2

0

∫ 1−x/2

0

∫ 3−3x/2−3y

0
dz dy dx.

Evaluating this iterated integral gives

∫ 2

0

∫ 1−x/2

0

(
3− 3x

2
− 3y

)
dy dx

=

∫ 2

0

(
3y − 3xy

2
− 3y2

2

) ∣∣∣y=1−x/2

y=0
dx =

∫ 2

0

3

2

(
1− x

2

)2
dx

= −
(

1− x

2

)3 ∣∣∣2
0

= 1.

Notice that this is the answer which geometry would have given us. Furthermore, notice
that the double integral we get after evaluating the integral with respect to z is exactly
identical to the double integral we would have had to calculate if we setup a double integral,
over the triangle D in the xy plane, of the function defining the plane which makes up the
top boundary of the tetrahedron.


