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Partial derivatives not only tell us the rate of change of a function f(x, y) in either the
x or y direction, they can also help us calculate objects of interest such as tangent planes
and normal lines. Furthermore, they let us calculate the gradient of f , which allows us to
easily compute directional derivatives, among other things.

1. Directional derivatives and the gradient

Let f(x, y) be a function of two variables. Then the partial derivatives fx, fy can be
interpreted as the rate of change of a function in either the x or y direction. However, there
is nothing intrinsically special about these two directions: we may just as well ask what
the rate of change of f(x, y) in some other direction is.

More specifically, suppose we want to study the rate of change of f(x, y) at a point (a, b).
A direction can be specified by giving a unit vector; this vector points in some direction,
and is uniquely determined by a direction. Let u be such a vector; we sometimes call unit
vectors in this context a direction vector. Then we can ask how f(x, y) changes at (a, b) as
we go in the direction of u. We define the directional derivative of f(x, y) at v = (a, b) in
the direction of the unit vector u to be the value of the limit

Duf(a, b) = lim
h→0

f(v + hu)− f(v)

h
.

Partial derivatives are given by either letting u = 〈1, 0〉 or 〈0, 1〉. Intuitively, if we think
of f(x, y) as the height of a hill, then the directional derivative at (a, b) in the direction of
u is the rate at which the height increases or decreases if we walk in the direction of u at
(a, b).

How can we quickly calculate directional derivatives? To answer this question, we intro-
duce the gradient of a function f(x, y). The gradient of f(x, y), written ∇f(x, y), is defined
to be the function

∇f(x, y) = 〈fx(x, y), fy(x, y)〉.
This is a function which has domain R2, and takes values in R2: that is, the gradient of f
is a vector-valued function defined on R2.

It turns out that directional derivatives can easily be calculated in terms of ∇f(x, y):

Duf(a, b) = ∇f(a, b) · u.
When using this formula to calculate partial derivatives, be absolutely sure that you are
using a unit vector for u.

Example. Calculate the directional derivative of f(x, y) = x2+y2 at (4, 7) in the direction
〈1, 2〉. Remember that when calculating directional derivatives, our directions need to be
specified by a unit vector. The unit vector that points in the same direction as 〈1, 2〉 is
〈1/
√

5, 2/
√

5〉. The gradient of f(x, y) is ∇f = 〈2x, 2y〉. In particular, ∇f(4, 7) = 〈8, 14〉.
Then the directional derivative in question is

〈8, 14〉 · 1√
5
〈1, 2〉 =

36√
5
.
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This formula also allows us to easily see two properties of the gradient vector. Since
|u| = 1 regardless of the choice of u, the directional derivative Duf(a, b) is evidently
maximized when u points in the same direction as ∇f(a, b), because

∇f(a, b) · u = |∇f(a, b)||u| cos θ = |∇f(a, b)| cos θ

which is clearly maximized when θ = 0. Furthermore, the rate of change in the direction
of maximum increase is given by |∇f(a, b)|. Therefore, we see that the gradient vector (1)
points in the direction in which a function is increasing most rapidly, and (2) the magnitude
of the gradient vector tells us the rate of this increase.

Example. Consider z = x2 + y2. At the point (2, 3), in what direction is z increasing
most rapidly? How rapidly is z increasing in that direction? We begin by calculating
∇z = 〈2x, 2y〉. Therefore, ∇z(2, 3) = 〈4, 6〉. This is the direction in which z is increasing

most rapidly. Furthermore, z is increasing at a rate of |∇z(2, 3)| =
√

42 + 62 = 2
√

13 in
this direction.

2. Tangent planes and normal lines

Recall that the derivative of a single variable function f(x) can be interpreted as the
slope of the tangent line to the graph y = f(x). In particular, at x0, this tangent line has
equation

y − f(x0) = f ′(x0)(x− x0).
We seek a similar formula for the tangent plane to a graph of a function of two variables.
Intuitively, it is somewhat clear that a surface should usually have many lines tangent to it,
and perhaps less obvious that these lines will form a plane. It turns out that if a function
f(x, y) is differentiable at a point (x0, y0), then the tangent plane is given by the equation

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).
This formula is very similar to the equation for a tangent line.

Example. Find the tangent plane to f(x, y) = xy+y2 at (1, 2). We find fx = y, fy = x+2y,
so fx(1, 2) = 2, fy(1, 2) = 5. The equation for the tangent plane is thus

z − 6 = 2(x− 1) + 5(y − 2).

There is actually a more general equation for the tangent plane to a surface given by
an equation of the form F (x, y, z) = C, for some constant C. (In particular, the case of a
graph of a function f(x, y) is the special case F (x, y, z) = z − f(x, y) = 0.) The tangent
plane to F (x, y, z) = C at (x0, y0, z0) is given by the formula

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

In particular, notice that ∇F (x0, y0, z0) is a normal vector for this plane. This tells us that
another interpretation of ∇F is as a vector which is orthogonal to level curves/surfaces of
F .

Finally, this formula also provides us with a convenient way to calculate the normal line
to a surface, which are the lines which are orthogonal to the tangent planes of a surface.
Since ∇F (x0, y0, z0) is normal to a tangent plane, a vector equation for a normal line is
given by

〈x0, y0, z0〉+ t〈Fx(x0, y0, z0) + Fy(x0, y0, z0) + Fz(x0, y0, z0)〉.
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Of course, this discussion of normal lines is valid not only for functions F (x, y, z) = C,
but also F (x, y) = C.

Examples.

• Determine the equations for the normal lines to the graph of x2−y2 = 1 for a general
point on this graph. In this situation, F (x, y) = x2 − y2, so ∇F (x, y) = 〈2x,−2y〉.
Therefore, the normal line at x0, y0 is given by

〈x0, y0〉+ t〈2x0,−2y0〉.
• Consider the sphere x2 + y2 + z2 = 9. Calculate the equation for the tangent plane

and normal line to the sphere at (2, 1, 2).
We begin by calculating the gradient of f(x, y, z) = x2 + y2 + z2. We see that

∇f = 〈2x, 2y, 2z〉. Therefore, the gradient at (2, 1, 2) is equal to ∇f(2, 1, 2) =
〈4, 2, 4〉. Therefore, the tangent plane to x2 + y2 + z2 = 9 at (2, 1, 2) has normal
vector 〈4, 2, 4〉. The equation of this plane must then be

4x+ 2y + 4z = 18, or 2x+ y + 2z = 9.

The normal line has direction vector 〈4, 2, 4〉 and passes through (2, 1, 2). Therefore,
the normal line is given by parametric equations x = 2 + 4t, y = 1 + 2t, z = 2 + 4t.
Notice that this line passes through the origin.

3. Integration

Now that the quick review of Math 8 is finished, let’s start with the new material in
this class. We are interested in developing a theory of integration for functions of several
variables. Let us begin with the case of functions f(x, y) of two real variables. We want to
define an integral for this function. How should we proceed?

Notice that there is no obvious candidate for an antiderivative, so the strategy of trying
to define an integral as an antiderivative is not going to work. We should therefore emulate
the definition of a definite integral for functions of a single variable.

How is a definite integral ∫ b

a
f(x) dx

defined? Recall that the definition of this integral is as the value of a limit

lim
||P ||→0

∑
f(x∗i )∆xi

where the xi are a partition of [a, b], with largest ∆xi equal to ||P ||, and x∗i a number
between xi and xi+1. Each of these sums is called a Riemann sum, and can be thought of
as an approximation to the area under the graph of y = f(x) on the interval [a, b]. This
limit is just a fancy way of saying that we are interested in the limit of better and better
approximations to this area, which we obtain by making the rectangles thinner and thinner.
Presumably, our intuition tells us that this should make the error in approximation smaller
and smaller.

What is the correct analogue of the notion of a Riemann sum for functions of two vari-
ables? Such a sum should estimate the volume under the graph of z = f(x, y) on some
region. The closest analogue to an interval [a, b] in R might be a rectangle R in R2, perhaps
of the form [a, b] × [c, d]. We want a sum which estimates the volume of the region under
z = f(x, y) over the rectangle R.
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Just like how we use rectangles to approximate the area under y = f(x), we can use
rectangular prisms to approximate the area under z = f(x, y). In particular, over a rectan-
gle [xi, xi+1] × [yi, yi+1], we can use a rectangular prism with that rectangle as base, and
height given by f(x∗i , y

∗
i ) as an approximation to the volume over this smaller rectangle.

This rectangular prism has volume

f(x∗i , y
∗
i )∆xi∆yi.

(∆xi = xi+1 − xi, and similarly for ∆yi.) Therefore, the sum of these rectangular prisms,
which is approximating the volume under z = f(x, y) over the rectangle R, is∑

f(x∗i , y
∗
i )∆xi∆yi

where the summation is over all small rectangles making up the large rectangle R. This
sum is called a Riemann sum for z = f(x, y) over the rectangle R. If we make these small
rectangles smaller and smaller, then the limit of these sums (if the limit exists) will be
called the definite integral of f(x, y) over R and will be denoted∫∫

R

f(x, y) dA.

The two integral signs remind us that we are integrating over a two-dimensional region;
namely, the rectangle R which is written underneath the two integral signs. The differential
dA tells us that we are integrating with respect to an area element. It is mostly to be thought
of as notation further reminding us that we are integrating over a two-dimensional region.

Of course, in practice, we never use this definition of a definite integral to actually
evaluate definite integrals ∫ b

a
f(x) dx.

We sometimes see how to evaluate these integrals directly using the limit definition for cer-
tain special functions, like f(x) = x2, but these calculations are long and tedious. Instead,
we use the fundamental theorem of Calculus, which tells us that to evaluate a definite
integral we need only find an antiderivative for f(x), and then evaluate it at a, b.

What we seek now is a convenient way to evaluate double integrals. Even though we
should not expect a ‘fundamental theorem of Calculus’ for double integrals yet, we can still
make use of the FTC for functions of a single variable, as we shall see next class.


