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We now discuss the last of the three great theorems in this class: Stokes’ Theorem.
Before we state the theorem, we need to explain how an oriented surface can induce an
orientation on its boundary.

Recall that an orientation for a surface S is a continuous choice of unit normal vector
on the entire surface, and intuitively corresponds to a choice of one of the two sides of the
surface. Suppose S has a boundary which is a curve ∂S = C. Then the orientation S
induces on C is the orientation of C which is compatible with the right-hand rule: that is,
if we point our thumb in the direction of the orientation of S at points near C, then the
orientation on C which is obtained is the direction in which the other four fingers point
along C. Another way of saying this is that if you walk along C in the direction of the
orientation induced by S with your head pointed in the direction of the unit normal for
S, then S will be on your left-hand side. The textbook sometimes calls this the positive
orientation of C induced by S.

Examples.

• If S is a region in the xy-plane, as in Green’s Theorem, with upward pointing
orientation, then the orientation induced by S on its boundary curve C is exactly
the same with this definition as in the definition we used when discussing Green’s
Theorem. Indeed, we said that a simple closed curve was positively oriented if we
moved in the counterclockwise direction along C, which was identical to saying that
the interior of C always stayed on the left hand side of motion along C. This is
compatible with the more general definition above, as one can check.
• Let S be the hemisphere x2 + y2 + z2 = 1, z ≥ 0, with orientation pointing radially

outward. Then the orientation induced on the boundary circle C (which is x2+y2 =
1, z = 0) is the counterclockwise orientation.

Theorem. (Stokes’ Theorem) Let F be a C1 vector field in R3 defined on some piece wise
oriented surface S with boundary ∂S = C which carries the orientation induced by S. Then∫

C
F · dr =

∫∫
S

∇× F · dS.

Again, notice that this theorem has the same qualitative flavor as Green’s Theorem, the
Divergence Theorem, and the Fundamental Theorem of Calculus. The theorem says that,
under suitable hypotheses, the surface integral of some function (∇× F) over a surface S
is equal to the integral of a related function (F) on the boundary of S.

Stokes’ Theorem is not quite as easy to use as the Divergence Theorem, simply because
it is harder to compute ∇×F than ∇ ·F. In general, it is easier to calculate a line integral
than it is to calculate the surface integral of a curl, but in certain situations (namely, when
∇ × F is equal to 0), Stokes’ Theorem can be used to simplify the calculation of a line
integral.

Example. Let F = 〈sin y+ez, x cos y, xez〉. Evaluate the line integral of F across the curve
C given by the ellipse x2 + y2/4 = 1, z = 2, with counterclockwise orientation.
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Directly calculating this line integral would be fairly difficult, because of the somewhat
complicated definition of F. Instead, we will try using Stokes’ Theorem. We start by
computing ∇× F:

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

sin y + ez x cos y xez

∣∣∣∣∣∣ = 〈0, 0, 0〉.

If we choose S to be any surface with C as boundary (such as x2 + y2/4 ≤ 1, z = 2), then
Stokes’ Theorem says ∫

C
F · dr =

∫∫
S

∇× F · dS =

∫∫
S

0 dS = 0.

When applying Stokes’ Theorem you should be sure to check that F is C1 throughout all
of S, as it is in this case.

If it seems difficult to use Stokes’ Theorem for calculations, this is more than made up for
by the fact that Stokes’ Theorem has great theoretical significance. In the above example,
notice that F is C1 on R3, and ∇× F = 0. Recall that this means that F is conservative
on R3; as a matter of fact, f(x, y, z) = x sin y + xez is a potential function for F. If we
knew this, we could have obtained the above result using the fact that the line integral of
a conservative vector field around any closed path equals 0.

This seems to make even the above application of Stokes’ Theorem obsolete, but it turns
out that Stokes’ Theorem is used to prove the fact that ∇×F = 0 on R3 (or more generally,
any simply connected region in R3) implies that F is conservative!

Examples. (Three theoretical applications of Stokes’ Theorem)

• We want to use Stokes’ Theorem to show that if ∇ × F = 0 for a C1 vector field
F on a simply-connected region D in R3, then F is conservative on D. Let C be
any closed path contained in D; because D is simply connected it is possible to find
a surface S which lies entirely in D whose boundary is C. Then Stokes’ Theorem
applied to this choice of S,C gives∫

C
F · dr =

∫∫
S

∇× F · dS =

∫∫
S

0 dS = 0.

That D is simply connected is needed to ensure that we can find a surface S entirely
contained in D whose boundary is C. For example, if D is instead a solid torus
(literally, in the shape of a donut), then one can check thatD is not simply connected
– for example, a circle wrapped once around the inner ring of the solid torus cannot
be continually deformed to a point. If you think of various surfaces S with this
circle C as boundary, you will find that every choice of S which you can think of
will have to leave D somewhere, and therefore you will be unable to apply Stokes’
Theorem to C since you cannot find S for which you know ∇×F = 0 over all of S.
(For proofs of these topological facts, you will want to take a course in topology.)
• Stokes’ Theorem can be used to prove Green’s Theorem. Recall the statement of

Green’s Theorem: if C is a simple closed curve in R2 with positive orientation, D
is the interior of C, and F = 〈P,Q〉 is a C1 vector field on D, then∫

C
P dx+Qdy =

∫∫
D

Qx − Py dA.
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To apply Stokes’ Theorem to this setup, we embed this copy of R2 into R3 by
declaring it to have z coordinate 0; i.e., we call this copy of R2 the xy plane. We
can then think of S as D, with upward pointing orientation (to ensure that the
induced orientation is the positive orientation on C), and F = 〈P,Q, 0〉 as a vector
field defined on S. In particular, n = 〈0, 0, 1〉. Thinking of F as now being a vector
field in R3, we can compute ∇× F:

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
P Q 0

∣∣∣∣∣∣ = (Qx − Py)k.

(We use the fact that P,Q are functions only of x, y, so that Pz = Qz = 0.)
Therefore, Stokes’ Theorem applied to S = D and C gives∫

C
P dx+Qdy =

∫∫
S

∇× F · n dS =

∫∫
D

Qx − Py dA.

Stokes’ Theorem is powerful indeed if it contains Green’s Theorem as a special case!
• Much like how we used the Divergence Theorem to formalize the notion of ∇ ·F as

measuring the divergence of a point, we can use Stokes’ Theorem to formalize the
idea of curl as measuring the rotational tendency of a vector field at a point.

If we are interested in the value of∇×F at a point P , let S be a small circular disc
of raidus r centered at P with unit normal everywhere given by a vector pointing
in the same direction as ∇ × F. Because r is small, the value of ∇ × F across S
is well approximated by ∇× F(P ). Then the surface integral of ∇× F across S is
approximated by∫∫

S

∇× F · n dS ≈
∫∫
S

|∇ × F(P )| dS = |∇ × F(P )|πr2.

On the other hand, if C is the boundary of S, then Stokes’ Theorem tells us the
above surface integral also equals∫

C
F · dr =

∫∫
S

∇× F · n dS ≈ |∇ × F(P )|πr2.

Therefore, ∇× F(P ) is approximately equal to

∇× F(P ) ≈ 1

πr2

∫
C
F · dr.

This approximation is accurate in the limit; that is, as r → 0 the above approxi-
mation becomes an equality. The line integral on the right can be thought of as a
measure of the rotational tendency of the vector field F in a plane orthogonal to
∇× F(P ).

There is a sometimes a clever way of using Stokes’ Theorem to simplify the calculation of
surface integrals. First, we will use the fact (not proven in this class) that if a C1 vector field
F on R3 satisfies ∇ ·F = 0, then there exists another vector field G such that ∇×G = F.

Suppose we are asked to evaluate the surface integral of such a vector field F across
a surface S1. It may happen that S1 is very complicated, but that we can find another,
simpler surface S2 with identical boundary curve C. Then Stokes’ Theorem tells us
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∫∫
S1

F · dS =

∫∫
S1

∇×G · n dS =

∫
C
G · dr =

∫∫
S2

∇×G · n dS =

∫∫
S2

F · dS.

That is, the value of the surface integral of F is independent of the choice of surface S, as
long as all surfaces have the same boundary curve.

Example. Let F = 〈−2x, y, z〉, and let S1 be the hemisphere x2 + y2 = 1, z ≥ 0 with
radially outward pointing orientation. Evaluate the integral of F across S1.

Directly calculating this integral would be annoying since we would have to use spherical
coordinates to parameterize S1. First, we check that∇·F = −2+1+1 = 0, and of course F is
C1 on R3. S1 induces the counterclockwise orientation on its boundary x2 + y2 = 1, z = 0.
We let S2 be the unit disc x2 + y2 ≤ 1, z = 0 with upward pointing orientation; then
one immediately sees that S2 induces the same orientation on C as S1. Then the above
discussion tells us that we can replace the evaluation of the integral across S1 with evaluation
of the integral across S2, which is geometrically much simpler. As a matter of fact, since
n = 〈0, 0, 1〉 on S2, on S2 we have

F · n = 〈−2x, y, z〉 · 〈0, 0, 1〉 = z = 0.

Therefore, we will be integrating the 0 function on S2, so the value of the surface integral
of F along either S1 or S2 is equal to 0.

If you remember how we used the Divergence Theorem, though, you will notice that we
already had a method of reducing the evaluation of the integral across S1 to the surface
S2. Since S1 and S2 together bound a solid E, we can apply the Divergence Theorem to E,
and since ∇·E = 0, the Divergence Theorem also tells us that the integral across S1, S2 are
equal to each other. Nevertheless, this shows how there seems to be a subtle relationship
between Stokes’ Theorem and the Divergence Theorem, despite the fact that they seem to
be somewhat different from each other.


