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1. Surface integrals of vector fields

Recall that we motivated the concept of a surface integral of a vector field by discussing
the flux of a vector field across a surface. If the vector field is thought of as the amount of
fluid which is flowing per unit time, the flux represents the total amount of fluid passing
through the surface per unit time. In the course of discussing flux, we saw that a choice of
normal vector to a surface influences the sign of the flux. This led us to discuss orientation,
which is a choice of side of S, with the precise definition being a continuous choice of unit
normal vector n of S, and then we examined how we could actually compute normal vectors
from a parameterization of a surface.

Of course, a surface integral of a vector field F across a surface S in R3 is defined as a
particular type of Riemann sum, this time of the function F ·n, but in practice the formula
we will use to calculate a surface integral of a vector field is∫∫

S

F · n dS =

∫∫
D

(F · n)(u, v)|ru × rv| dA,

where r(u, v) is a parameterization of S defined on the region D. We need to calculate
F ·n as a function of u, v using the parameterization r. Recall that if we choose r such that
ru × rv points in the same direction as the given orientation n, then

n =
ru × rv
|ru × rv|

.

Therefore, another way of writing the above formula is as∫∫
S

F · n dS =

∫∫
D

(F · ru × rv)(u, v) dA.

This formula is analogous to the formula used to calculate the line integral of a vector field:∫
C
F · dr =

∫ b

a
(F · r′)(t) dt.

In practice, evaluating a surface integral is a lengthy and multi-step calculation. Given
a surface S (with a given orientation) and a vector field F, to calculate a surface integral
we usually need to do the following:

• Find a parameterization r(u, v), over a region D in the uv plane, which describes
S, and has the correct orientation. In practice, this means that ru × rv should be
pointing in the same direction as the normal vector n which describes the given
orientation on S. Techniques for finding the parameterization of S depend on the
actual surface S you are given; in practice this can be quite hard and is only
straightforward for relatively simple surfaces.
• Calculate ru × rv. This involves taking partial derivatives and computing a cross

product. You should check that ru × rv points in the same direction as the unit
normal vector n specifying the orientation of S. If you find that ru × rv points
in the opposite direction of n, you can keep using r in your calculations, but be
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sure to reverse the sign of your final answer if you are using an r of the incorrect
orientation.
• In the definition of F, replace all the x, y, zs with the componentsX(u, v), Y (u, v), Z(u, v)

of the parameterization r. Then take the dot product of this with ru × rv(u, v) to
obtain a scalar function of u, v.
• Evaluate the resulting double integral in u, v over D.

We say that we ‘usually’ do these steps because there are times when you can simplify
the calculation of a surface integral if the problem is of a special form. We will also learn
a deep theorem next week which sometimes lets us calculate a surface integral indirectly.

Examples.

• Let S be the sphere x2 + y2 + z2 = 4 with the default outward orientation. Let
F(x, y, z) = 〈x, y, z〉. Calculate the flux of F across S.

In this example we will illustrate a shortcut which you can sometimes take in
evaluating a surface integral. If we wanted to, we could find a parameterization of
the sphere using spherical coordinates, but then all the calculations would be long
and messy. We will instead use a special property of this choice of F to solve this
problem with very few computations.

If you draw a sketch of the vectors F at points of S, you will find that they are
all orthogonal to the surface S, because the geometry of the sphere is such that the
normal vectors to a sphere either point radially outwards or radially inwards. In
particular, with the specified outward orientation, a point (x, y, z) on S has unit
normal vector

n =
〈x, y, z〉
|〈x, y, z〉|

= 〈x, y, z〉,

since (x, y, z) lies on S so has distance 2 from the origin. Therefore,

F · n = 〈x, y, z〉 · 〈x, y, z〉
2

= 2,

again because (x, y, z) has distance 2 from the origin. The point of this calculation
is that we can easily determine F ·n at every point of S, and this value is constant,
because F is orthogonal to S at every point of S, so that calculating F·n is especially
straightforward. Since we know F · n = 2, the flux of F across S is∫∫

S

F · n dS =

∫∫
S

2 dS = 2A(S),

where A(S) is the surface area of S. Since S is a sphere of radius 2, the surface
area is 4π22 = 16π, so the total flux is equal to 32π.

Two very special properties had to hold for us to simplify the calculation of a
surface integral so much. We needed to be able to compute F ·n easily by exploiting
the geometric relationship of F with n, and we also needed this value to be constant
across S. Even if F ·n can be easily computed through geometry, if this value varies
over S, we would have had to find a parameterization of S to allow us to calculate
the surface integral of the scalar function F · n.
• So far, our definition of surface integrals technically only holds for smooth surfaces
S, which have ru × rv 6= 0 everywhere. We can extend the definition of a surface
integral to a piecewise smooth surface S, which is a surface which is smooth ev-
erywhere except at a finite number of curves. For example, a polyhedron, such as
a tetrahedron or cube, are examples of piecewise smooth surfaces. They are not
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smooth at their edges (a bit of thought shows that you cannot define a unit normal
n there), but they are smooth at every point except their edges. We can usually
break up such a piecewise smooth surface into its smooth components and then
calculate surface integrals for each component separately.

For example, let S be a cube with vertices at (a, b, c), where a, b, c take the values
0 or 1. Let S have the usual outward orientation. If F = 〈x+ 1, 0, 0〉, find the flux
of F across S.

To solve this problem, we will again note a special geometric relationship between
F and S to simplify the calculation of this surface integral. If we wanted to solve
this problem using the general technique outlined above, we would have to break
up S into its 6 faces, and then evaluate the flux across each face separately. This
would involve finding a parameterization for each face (which is not too hard as
they are all pieces of planes, but is still annoying) and then carrying out the usual
steps for each face. Obviously, this would be very computationally intensive.

Fortunately, much like the sphere example above, a special geometric relationship
between F and S greatly simplifies our calculations. Consider the four faces which
are parallel to the xy or xz planes. The unit normal vectors to these planes are ±k
or ±j respectively, so F · n for these faces will always equal 0, because F has y, z
components equal to 0! Therefore, the surface integral of F across these faces will
equal 0.

All that remains are the two faces corresponding to x = 0, x = 1, which are
parallel to the yz plane. For the face x = 0, the unit normal is given by 〈−1, 0, 0〉,
because of the outward orientation of the cube. Therefore, F ·n = −1 on the entire
face, since F = 〈1, 0, 0〉 on that face. Therefore, the flux across the face x = 0 is
equal to −1 times the area of the face, which is 1, so the flux is −1. On the face
x = 1, we can choose n = 〈1, 0, 0〉, and then F · n = 2, since F = 〈2, 0, 0〉 on that
entire face. This face also has area 1, so the flux across this face is equal to 2. In
total, then, the flux across the entire cube is equal to 2− 1 = 1.

In this example, we still used the fact that F·n could be easily calculated and was
constant on each face of the cube to simplify the calculation of a surface integral.
On some faces, F and n were always orthogonal, while on other faces, they were
parallel.
• (Exercise #21, Chapter 17.7 of textbook) Let F = 〈xzey,−xzey, z〉, and let S be

the part of the plane x + y + z = 1 in the first octant with downward orientation.
Find the flux of F across S.

This time we cannot calculate F ·n as quickly as the previous two examples, but
we still are in a situation where our calculations are not as complicated as they
otherwise might be. First, we find a parameterization for S; since S is the graph of
the function z = 1− x− y over the domain x ≥ 0, y ≥ 0, x+ y ≤ 1, we can use

r(u, v) = 〈u, v, 1− u− v〉, u+ v ≤ 1, 0 ≤ u, v.
We calculate ru × rv for this choice of r. Since ru = 〈1, 0,−1〉, rv = 〈0, 1,−1〉,
ru × rv = 〈1, 1, 1〉. Notice that this points in the wrong direction, so we should
remember to reverse the sign of our answer at the end of our calculations. In any
case, for this choice of ru × rv,

F · ru × rv = 〈xzey,−xzey, z〉 · 〈1, 1, 1〉 = z.

As a function of u, v, this is equal to 1− u− v.
To find the surface integral we are interested in, we need to calculate the double

integral of this function over the domain D of the uv plane which describes S, which
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is u, v ≥ 0, u + v ≤ 1. This can be described using inequalities 0 ≤ u ≤ 1, 0 ≤ v ≤
1− u. Therefore, the integral we want to calculate is equal to

∫∫
D

(1− u− v) dA =

∫ 1

0

∫ 1−u

0
1− u− v dv du =

∫ 1

0

(1− u)2

2
du =

−(1− u)3

6

∣∣∣1
0

=
1

6
.

Recall that we need to reverse the sign, since our choice of r yielded the incorrect
direction of ru × rv, so the answer is −1/6.

In this example, because we could not rapidly calculate F · n, we carried out all
the steps that are usually needed to evaluate a surface integral. Nevertheless, in this
example ru × rv was constant, so our resulting calculations were relatively simple.
Notice that if we choose to just integrate F · ru × rv, we can skip the calculation of
n.


