## CLASS 19, 5/9/2011, FOR MATH 13, SPRING 2011

## 1. SURFACE INTEGRALS OF SCALAR FUNCTIONS: PARAMETRIC EQUATIONS FOR SURFACES

In this class, we've seen two ways of generalizing an integral $\int_{a}^{b} f(x) d x$. On the one hand, we can integrate over higher dimensional regions which lie in $\mathbb{R}^{n}$, the simplest case being when we integrate over rectangles or rectangular prisms, and on the other hand, we can integrate over one dimensional curves $C$ with line integrals $\int_{C} f(x, y) d s$ or $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

The next topic we will cover is a hybrid of these two ideas. We want to integrate over two dimensional regions which may not be flat regions in the plane: that is, we want to learn how to integrate over surfaces.

If we want to generalize the idea of a line integral over a curve $C$ to an integral over a two-dimensional surface, let's start by closely examining the various terms in a line integral and the actual method we use to evaluate a line integral.

When we evaluate a line integral of a scalar function $f(x, y)$ over a curve $C$, we need to know a parameterization $\mathbf{r}(t)=\langle x(t), y(t)\rangle, a \leq t \leq b$ of $C$. We use this parameterization in the following formula:

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

Let us examine the $\left|\mathbf{r}^{\prime}(t)\right|$ term more closely. If we pretend that $\mathbf{r}(t)$ describes the motion of a particle, then $\left|\mathbf{r}^{\prime}(t)\right|$ tells us the speed of the particle. Another interpretation of this term is as a length expansion factor: the segment $[t, t+\Delta t]$, which has length $\Delta t$, is transformed by $\mathbf{r}(t)$ to the piece of the curve $C$ from $\mathbf{r}(t)$ to $\mathbf{r}(t+\Delta t)$, and this curve has length approximately $\left|\mathbf{r}^{\prime}(t)\right| \Delta t$.

What is the analogous setup if we replace the curve $C$ with a surface $S$ ? A surface is two-dimensional, so if we want to give a parametric description of a surface, we will need to use two variables, which we will generally call $u, v$. The surface $S$ can be described as the set of points of the form $\mathbf{r}(u, v),(u, v) \in D$, where $D$ is some region in the $u v$ plane, and $\mathbf{r}(u, v)$ some function of $u, v$ which takes values in $\mathbb{R}^{3}$, say. We could let $\mathbf{r}$ take values in $\mathbb{R}^{n}$ for $n>3$, but then we would be looking at surfaces in four or more dimensions and we would not be able to visualize these. As a matter of fact, some of the theory we will develop for surfaces in two dimensions will not have an obvious generalization to higher dimensional surfaces, so this restriction on $\mathbf{r}$ is not just cosmetic.

## Examples.

- Let $\mathbf{r}(u, v)=\langle u, v, 1-u-v\rangle, u, v \in \mathbb{R}$. This just describes the plane $x+y+z=1$. To see this, notice that the $z$ coordinate of any point on this surface always satisfies $z=1-x-y$. The fact that $u, v$ are unrestricted corresponds to the fact that we pick up every point on this plane. If we had restricted $u, v$ to the triangle $u+v \leq 1, u \geq 0, v \geq 0$, say, then we would only pick up the points on this plane located in the first octant.
- More generally, suppose we have a surface $S$ given by the graph $z=f(x, y)$ of a function over a domain $D$ in the $x y$ plane. Then this graph always has the parameterization $\mathbf{r}(u, v)=\langle u, v, f(u, v)\rangle,(u, v) \in D$. Of course, there are going to
be many alternate parameterizations for $S$. This is a generalization of the fact that it is easy to parameterize a curve $C$ if that curve is a piece of the graph of a function $y=f(x)$.

There is nothing special about the $z$-coordinate in this example. If a surface $S$ is given as the graph $y=f(x, z)$ of a function over a domain $D$ in the $x z$ plane, instead, then we can always use the parameterization $\mathbf{r}(u, v)=\langle u, f(u, v), v\rangle,(u, v) \in D$, and similarly if $S$ is given by $x=f(y, z)$.

- Let $\mathbf{r}(u, v)=\langle\cos u, \sin u, v\rangle, 0 \leq u \leq 2 \pi, v \in \mathbb{R}$. This parametric equation describes the cylinder given by the equation $r=1$. To see this, notice that as $u$ varies from 0 to $2 \pi$, the $x, y$ coordinates describe a circle of radius 1 in the $x y$ plane. As $v$ varies, this circle moves up and down in the $z$ direction.

If we fix $u$ and let $v$ vary, we obtain various vertical lines on the surface of this cylinder, while if we let $u$ vary and fix $v$, we obtain circles on the surface of the cylinder parallel to the $x y$ plane. These rulings will play an important role when we actually discuss integrating over surfaces.

- Let $\mathbf{r}(u, v)=\langle\sin u \cos v, \sin u \sin v, \cos u\rangle, 0 \leq u \leq \pi, 0 \leq v \leq 2 \pi$. It looks like it might be difficult to determine what the image of $\mathbf{r}$ is, but these equations actually have a very familiar form. They look like the equations for spherical coordinates, with $\rho=1, u=\phi, v=\theta$. Therefore, this parametric equations determines a sphere of radius 1 .

