
CLASS 17, 5/4/2011, FOR MATH 13, SPRING 2011

1. Conservative vector fields

Let F be a C1 vector field defined on an open, connected region D. Recall the following
properties are equivalent:

• F is conservative on D; ie, F = ∇f for some differentiable potential function f(x, y)
defined on D.
• F is path-independent on D.
•
∫
C F · dr = 0 for any closed curve C which lies entirely in D.

Furthermore, if F = 〈P,Q〉 is conservative on D, then Py = Qx.
If D is simply-connected (intuitively, no holes), and if Py = Qx on all of D, then F is

conservative.

Examples.

• Let F(x, y) = 〈3x2, 3y2〉. Use the criterion Py = Qx to show that F is conservative,
and then find a potential function for F.

Since P = 3x2, Q = 3y2, Py = Qx = 0. Furthermore, F is defined for all of R2,
which is simply connected, so F is conservative.

To find a potential function f , we use ‘partial integration’. Since fx = 3x2, f(x, y) =
x3 + g(y), for some function g(y). Similarly, because fy = 3y2, f(x, y) = y3 + h(x),
for some function h(x). Since x3 + g(y) = y3 + h(x), we pick g(y) = y3, h(x) = x3,
so f(x, y) = x3 + y3.
• Let F(x, y) = 〈cos y + yexy,−x sin y + xexy〉. Use the criterion Py = Qx to show

that F is conservative, and then find a potential function for F.
Since P (x, y) = cos y+yexy, Py = − sin y+exy +xyexy. Similarly, Qx = − sin y+

exy + xyexy. These are equal; furthermore, F is C1 on all of R2, which is simply
connected, so we can conclude that F is conservative.

To find a potential function f , we use ‘partial integration’. Since fx = cos y +
yexy, f(x, y) = x cos y+exy+g(y). Similarly, because fy = −x sin y+xexy, f(x, y) =
x cos y+ exy + h(x). Therefore, f(x, y) = x cos y+ exy is a potential function for F.

2. Green’s Theorem

We now discuss a theorem which connects double integrals with line integrals. A simple
closed curve is a closed curve which does not intersect itself. Let C be a simple closed curve
lying in R2. Then the positive orientation of C is defined to be the orientation of C we
obtain by moving in single counterclockwise loop along C. An alternate definition is that
if we walk in the direction of the positive orientation for C, the interior of C is always on
our left-hand side. The negative orientation of C is the opposite orientation of the positive
orientation for C.

Theorem. (Green’s Theorem) Let C be a positively oriented, piecewise smooth, simple
closed curve in R2. Let D be the region bounded by C. If F = 〈P,Q〉 is a C1 vector field
on D, then
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∫
C
F · dr =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

An alternate formulation of Green’s Theorem is∫
C
P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

• We will not prove Green’s Theorem, or give an indication of how the proof goes yet,
but we will see how it is a consequence of a more general theorem we will study in
a few weeks.
• Green’s Theorem should be philosophically interpreted as a higher-dimensional ana-

logue of the FTC. The usual FTC relates the value of a double integral over an in-
terval to the value of its antiderivative at the endpoints, which is also the boundary,
of that interval. Green’s Theorem relates the value of the double integral of the ex-
pression Qx−Py over a region D to a line integral of a related function (which may
not look like an antiderivative, but certainly involves ‘partial integrals’ of Qx, Py)
over the boundary of D.
• Green’s Theorem can sometimes act as a bridge between line integrals and double

integrals. For example, it may be difficult or tedious to evaluate a certain line
integral, but an application of Green’s Theorem might convert that line integral
into a double integral which is easier to evaluate. Conversely, a double integral
which might look difficult to evaluate can sometimes be converted to a line integral
which is easier to evaluate, although this is slightly more difficult to do.
• The strategy of when to use Green’s Theorem: In general, if you have to evaluate a

line integral over a rectangle, or the boundary of some other simple two-dimensional
region which consists of several different pieces, using Green’s Theorem will usu-
ally simplify your calculation. Calculating a line integral over a rectangle involves
breaking up that rectangle into its four sides, separately calculating parameteriza-
tions for each side, and then calculating four different line integrals. However, an
application of Green’s Theorem will convert the line integral into a single double
integral over a rectangle, which usually is easy to do.

Line integrals over regions like circles may or may not be simplified using Green’s
Theorem. It depends on the vector field being integrated. If you find you are
having difficulty evaluating a certain line integral because the resulting integrand
is excessively complicated, try using Green’s Theorem to see if you get a simple
double integral.

Examples.

• Let F = 〈y cosx, x2〉, and let C be the boundary of the square R, given by 0 ≤ x ≤
1, 0 ≤ y ≤ 1 with positive orientation. Evaluate

∫
C F · dr.

If you wanted to, you could split C up into its four sides, parameterize each side,
and then evaluate the line integral along each side, but that’s a lot of work. If you
apply Green’s Theorem, with P = y cosx, Py = cosx,Q = x2, Qx = 2x, then we get

∫
C
F·dr =

∫∫
R

Qx−Py dA =

∫ 1

0

∫ 1

0
2x−cosx dy dx =

∫ 1

0
2x−cosx dx = x2−sinx

∣∣∣1
0

= 1−sin 1.
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• Let F = 〈−y3 + log(sinx), x3 + arctan y〉, and let C be the circle x2 + y2 = 1 with
counterclockwise orientation. Evaluate

∫
C F · dr.

If you try to directly calculate this line integral, you will have a really difficult
time because the resulting integral in the parameter t will be a complete mess. If
you try to evaluate this integral using the fundamental theorem for line integrals
you will also fail, because F is not conservative. Therefore, you should try Green’s
Theorem.

Since P = −y3 +log(sinx), Py = −3y2. Similarly, Qx = 3x2, so Green’s Theorem
says ∫

C
F · dr =

∫∫
D

Qx − Py dA =

∫∫
D

3x2 + 3y2 dA,

where D is the disc x2+y2 ≤ 1. This looks like an integral we should evaluate using
polar coordinates. If we convert this double integral to polar coordinates we get∫∫

D

3x2 + 3y2 dA =

∫ 2π

0

∫ 1

0
3r2r dr dθ =

∫ 2π

0
3/4 dθ =

3π

2
.

• An interesting application of Green’s Theorem is to the calculation of areas of two-
dimensional regions. Recall that the area of a region D can be expressed as the
value of the double integral

∫∫
D

dA. If we select P,Q such that Qx − Py = 1, then∫
C P dx + Qdy will also equal the area of D, where C is the boundary of D with

positive orientation.
For example, selecting Q = x, P = 0 yields the equation A(D) =

∫
C x dy. Select-

ing Q = 0, P = −y, or Q = x/2, P = −y/2 gives the equations

A(D) = −
∫
C
y dx =

1

2

∫
C
x dy − y dx.

Let us apply this to the calculation of the area of an ellipse (which we already
know how to do using other means). Suppose D is the region x2/a2 + y2/b2 ≤ 1;
this is the region enclosed by an ellipse with axes of length 2a, 2b. The boundary
C of D is parameterized by r(t) = 〈a cos t, b sin t〉, 0 ≤ t ≤ 2π. If we use the last of
the expressions for the area of D, we get

A(D) =
1

2

∫
C
x dy−y dx =

1

2

∫ 2π

0
(a cos t)(b cos t)−(b sin t)(−a sin t) dt =

1

2

∫ 2π

0
ab dt = πab.

• (Exercise 17.5.21 of the textbook) This problem from the textbook gives a neat
application of Green’s theorem to the problem of calculating the volume of a poly-
gon. More specifically, the problem describes a simple formula for the volume of
a polygon in terms of the coordinates of the vertices of the polygon. The problem
consists of two parts (really three, but the last part is not as interesting): first, show
that if C is the line segment from (x1, y1) to (x2, y2), then∫

C
x dy − y dx = x1y2 − x2y1,

and then if (x1, y1), . . . , (xn, yn) are the vertices of a polygon, listed in counter-
clockwise order, then its area A is equal to

A =
1

2
((x1y2 − x2y1) + (x2y3 − x3y2) + . . .+ (xny1 − x1yn)).
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We first find a parameterization for C. For example, r(t) = 〈x1(1 − t) +
x2(t), y1(1− t) + y2t〉, 0 ≤ t ≤ 1, works. This choice of parameterization has

x′(t) = x2 − x1, y′(t) = y2 − y1,
so the line integral in question is equal to

∫ 1

0
(x1(1− t) + x2(t))(y2 − y1)− (y1(1− t) + y2t)(x2 − x1) dt

If you expand the terms in the integrand, you will find that all the terms with
coefficient t cancel out, and there is also some cancellation in the constant terms.
The end result is ∫ 1

0
(x1y2 − x2y1) dt = x1y2 − x2y1,

as desired.
For the second part, recall that if we have a positively oriented simple closed

curve C enclosing a region D, the area of D is given by the expression

1

2

∫
C
x dy − y dx.

(This was an application of Green’s Theorem where we chose P,Q in a special way
to get Qx − Py = 1.) In this problem, if we let Ci be the segment from (xi, yi) to
(xi+1, yi+1) (if i = n, we let xn+1 = x1, yn+1 = y1), then C is the same path as
C1, C2, . . . , Cn in succession. Therefore,∫
C
x dy − y dx =

∫
C1

x dy − y dx+

∫
C2

x dy − y dx+ . . .+

∫
Cn

x dy − y dx.

If we replace each line integral on the right hand side with the corresponding term
we get from part (a), and then multiply by 1/2, we get the desired result.

As an example, consider the triangle with vertices at (0, 0), (4, 3), (5, 2). Then an
application of this formula gives an area of 7/2. This method of calculating the area
is easier than using the basic formulas from Euclidean geometry (though possible;
give it a try!). Also, if you are attentive, you will notice that in this example, the
formula reduces to essentially the formula for the area of a parallelogram in terms
of the determinant of a 2× 2 matrix.
• Suppose F = 〈P,Q〉 is conservative on D. Then Py = Qx, so an application of

Green’s Theorem gives∫
C
F · dr =

∫∫
D

Qx − Py dA =

∫∫
D

0 dA = 0.

This is exactly as we expect by the FTC for line integrals, so in some sense Green’s
Theorem is a generalization of the FTC for line integrals, at least for regions D
enclosed by simple closed curves.


