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1. Change of variables: the Jacobian

So far, we have seen three examples of situations where we ‘change variables’ to help us
evaluate integrals: when we change from rectangular coordinates in R2 to polar coordinates,
when we change from rectangular in R3 to cylindrical coordinates, and when we change from
rectangular to spherical coordinates. These are all special instances of change of variables,
where we replace variables in an integral with other variables, according to how they are
related to each other. In each case, there was a formula which connected an integral in one
coordinate system to an integral in the other coordinate system, and in each case an extra
factor appeared in the integrand. We want to give a brief idea of just why these factors
appear, although a full explanation requires linear algebra.

Let us take a step back and think about just how we change variables before we actually
think about integration. In each situation, we’re given two or three variables, such as x, y, z,
and two or three other variables, such as r, θ, z, or ρ, θ, φ, which we express x, y, z in terms
of. Let’s look at the case of polar coordinates, where x = r cos θ, y = r sin θ. We can
encapsulate the relationship between x, y, r, θ by defining a function T : R2 → R2 which
takes (r, θ) to (r cos θ, r sin θ). In other words, T takes the polar coordinates of some points
to the rectangular coordinates of that point.

In particular, suppose we want to integrate a function f(x, y) over a region R using polar
coordinates. Then we start by finding a region S which describes R in polar coordinates:
in other words, we want T (S) = R. Furthermore, we want T to be a one-to-one map
on S; ie, we only want one point in S to map to a given point in R. This manifests
itself in the requirement that r ≥ 0, 0 ≤ β − α ≤ 2π when we integrate over a polar
rectangle, for example. Strictly speaking, we can slightly relax the one-to-one condition,
and possibly allow T to not be one-to-one for points on the boundary of S. In any case,
we end up with a formula which describes the integral of f(x, y) over R as an integral of
f(T (r, θ)) = f(r cos θ, r sin θ) over S.

This new terminology brings out the essential features when changing variables. In the
case where we are dealing with two variables, we have a function T , defined on points (u, v),
which sends (u, v) to (x, y), where x = g(u, v), y = h(u, v), are some functions of x, y. If
S is a region in the uv plane on which T is a one-to-one function, except possibly at the
boundary of S, and R = T (S), then we want an expression which relates an integral using
xy coordinates to one using uv coordinates.

For technical reasons, we require that T be a C1 transformation, which is a fancy way
of saying that g(u, v), h(u, v) should have continuous first order partial derivatives. How
are integrals using uv coordinates related to integrals using xy coordinates? Recall that
when defining an integral, we used Riemann sums, whose individual terms looked like
f(x∗, y∗)∆x∆y, where x∗, y∗ was a point inside a box of dimensions ∆x×∆y.

If we are integrating over S in the uv plane, a typical term in a Riemann sum will be
over a rectangle with side lengths ∆u,∆v. Suppose the rectangle this term represents has
a vertex (u, v) in the lower left hand corner. This is a small rectangle in the uv plane.
What is the image of this rectangle under the transformation T? Well, it might be hard
to determine exactly what this image is (T might well be a non-linear map), but we can
approximate the image with a parallelogram by pretending that T is linear. In particular,
the way we pretend that T is linear is by looking at partial derivatives of g, h.
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For example, suppose we want to approximate the image of (u+ ∆u, v) under T . Then
we are incrementing the u-coordinate by a small amount ∆u. The x coordinate of T (u, v)
is g(u, v). The x coordinate of T (u + ∆u, v) is given by g(u + ∆u, v), but this can be
approximated by

g(u) +
∂g

∂u
(u, v)∆u

because the partial derivative of g with respect to u, at (u, v), is equal to the rate of
change in the u-variable of g at (u, v). Therefore, the xy coordinates of T (u + ∆u, v) are
approximately equal to (

g(u) +
∂g

∂u
(u, v)∆u, h(u) +

∂h

∂u
(u, v)∆u

)
.

In a similar fashion, the xy coordinates of T (u, v + ∆v) are approximately equal to(
g(u) +

∂g

∂v
(u, v)∆v, h(u) +

∂h

∂v
(u, v)∆v

)
.

We approximate the image of the small rectangle under T by the parallelogram which has
these three vertices as adjacent vertices. The two sides of the parallelogram are represented
by the vectors 〈

∂g

∂u
(u, v)∆u,

∂h

∂u
(u, v)∆u

〉
,

〈
∂g

∂v
(u, v)∆v,

∂h

∂v
(u, v)∆v

〉
.

Recall that we have a method to calculate the area of a parallelogram spanned by two
vectors! If we pretend these are two vectors in R3 by adding a z coordinate of 0, then the
absolute value of their cross product is equal to the area of this parallelogram. The cross
product of these two vectors (thought of as in R3 is

∣∣∣∣∣∣
i j k

∂g
∂u(u, v)∆u ∂h

∂u(u, v)∆u 0
∂g
∂v (u, v)∆v ∂h

∂v (u, v)∆v 0

∣∣∣∣∣∣ =

(
∂g

∂u
(u, v)∆u

∂h

∂v
(u, v)∆v − ∂h

∂u
(u, v)∆u

∂g

∂v
(u, v)∆v

)
k.

The end result of all of these approximations and calculations is that the image of the small
∆u×∆v rectangle has area approximately equal to∣∣∣∣∂g∂u(u, v)∆u

∂h

∂v
(u, v)∆v − ∂h

∂u
(u, v)∆u

∂g

∂v
(u, v)∆v

∣∣∣∣ =

∣∣∣∣∂g∂u(u, v)
∂h

∂v
(u, v)− ∂h

∂u
(u, v)

∂g

∂v
(u, v)

∣∣∣∣∆u∆v.

Therefore, if we use the images of all the small uv rectangles to form a Riemann sum in
the xy plane, we end up with a sum of terms of the form

f(g(u∗, v∗), h(u∗, v∗)

∣∣∣∣∂g∂u(u, v)
∂h

∂v
(u, v)− ∂h

∂u
(u, v)

∂g

∂v
(u, v)

∣∣∣∣∆u∆v.

Define the function J(u, v), called the Jacobian of T , to be

J(u, v) =
∂g

∂u
(u, v)

∂h

∂v
(u, v)− ∂h

∂u
(u, v)

∂g

∂v
(u, v).

The sums of these terms approximates the double integral∫∫
R

f(x, y) dA,
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on the one hand, since the sum is composed of terms over small pieces which make up R.
On the other hand, this sum is also a Riemann sum for∫∫

S

f(g(u, v), h(u, v))|J(u, v)| du dv.

Therefore, it is reasonable to expect these two integrals to be equal to each other:∫∫
R

f(x, y) dA =

∫∫
S

f(g(u, v), h(u, v))|J(u, v)| du dv.

Notice that this looks like a more general form of the various integration formulas we know
for different coordinate systems: the integral of a function over a region R is expressed as
an integral over a region S, which describes R using a different coordinate system, with an
additional factor J(u, v) inserted into the integrand.

We remark here that, at least in the two variable case, the Jacobian J(u, v) is equal to
the determinant of a 2× 2 matrix:

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣ gu(u, v) gv(u, v)
hu(u, v) hv(u, v)

∣∣∣∣ .
(The determinant of a 2× 2 matrix

[
a b
c d

]
is equal to ad− bc.)

Example. Let x = r cos θ, y = r sin θ be the change of coordinates from (r, θ) to (x, y).
What is the Jacobian of this transformation?

We begin by calculating the partial derivatives of x, y with respect to r, θ. We have

xr = cos θ, xθ = −r sin θ, yr = sin θ, yθ = r cos θ.

Therefore, the Jacobian is

J(r, θ) =
∂(x, y)

∂(r, θ)
=

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

This explains the factor of r which appears in the integrand when switching to polar coor-
dinates.

In the case where we use change of variables with three coordinates, from a uvw coordi-
nate system to an xyz coordinate system, such as in cylindrical or spherical coordinates, it
turns out that the Jacobian is given by the determinant of a 3× 3 matrix whose entries are
the various partial derivatives of x, y, z in terms of u, v, w. This is not an accident, because
a fundamental property of determinants you learn in linear algebra is that the absolute
value of the determinant of a matrix is equal to the volume of the parallelepiped spanned
by its rows (or columns).

Example. Calculate the Jacobian of the transformation for rectangular coordinates; ie,
the Jacobian of x = r cos θ, y = r sin θ, z = z.

The relevant partial derivatives are

xr = cos θ, xθ = −r sin θ, xz = 0, yr = sin θ, yθ = r cos θ, yz = 0, zr = 0, zθ = 0, zz = 1.

Therefore, the Jacobian of this transformation is given by the determinant
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J(r, θ, z) =
∂(x, y, z)

∂(r, θ, z)
=

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ .
One can calculate this determinant using whatever formulas you may know; some knowledge
of linear algebra tells us that this determinant is in fact equal to∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣× 1 = r.

(This is found by performing so-called Laplace expansion on the third row.)
Recall that the factor which appears in a change of variable formula when integrating is

the Jacobian, which is the determinant of a matrix of first order partial derivatives.

Example. Check that the Jacobian of the transformation to spherical coordinates is
ρ2 sinφ.

The formulas relating rectangular to spherical coordinates are x = ρ sinφ cos θ, y =
ρ sinφ sin θ, z = ρ cosφ. Therefore, the Jacobian is given by∣∣∣∣∣∣

xρ xθ xφ
yρ yθ yφ
zρ zθ zφ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
sinφ cos θ −ρ sinφ sin θ ρ cosφ cos θ
sinφ sin θ ρ sinφ cos θ ρ cosφ sin θ

cosφ 0 −ρ sinφ

∣∣∣∣∣∣ .
If one expands this determinant in the usual way, after a lot of gathering terms and using
the identity cos2 + sin2 = 1, the above expression eventually equals ρ2 sinφ.

Here are a few remarks about the Jacobian:

• The Jacobian and change of variable formula is a generalization of u-substitution.
If we make a u-substitution u = u(x), then we have a formula∫

f(u) du =

∫
f(u(x))u′(x) dx.

The Jacobian of the transformation u = u(x) is u′(x), which is exactly the factor
appearing on the right side of this equation. The missing absolute value sign is
accounted for by the fact that if u′(x) is negative, the bounds of integration are
interchanged.
• If you have been carefully paying attention to the definition of a Jacobian, you

might be somewhat bothered by the fact that the Jacobian seems to depend on
the ordering of the variables in each of the two variable systems, since the ordering
determines the order of the rows and columns of the matrix in the Jacobian. It
turns out that interchanging rows and columns of a matrix may change the sign
of a determinant, but never the absolute value of the determinant, so the ordering
of the variables does not particularly matter when calculating a Jacobian. You
may end up with an answer which differs by a minus sign from someone else with
a different ordering, but when using the change of variable formula, you take the
absolute value of the Jacobian so the sign ambiguity will disappear.

Here is a typical example of using a change of variables which is not polar, cylindrical,
or spherical. You need to first decide which change of coordinates you should use to bring
the problem to a manageable form, and then make the appropriate coordinate change.
Deciding which change to use is more of an art than a science, and requires a lot of practice
to get consistently right. Nevertheless there are some clues which might help you make the
correct coordinate change.
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Example. Evaluate the double integral∫∫
D

e(y−x)/(y+x) dA.

where D is the triangle with vertices (0, 0), (2, 0), (0, 2).
The presence of y − x, y + x in a fraction suggests we should make a change of variable

like u = y−x, v = y+x. (It is still not obvious at this point that this is the correct change
to make.) We start by determining what the corresponding domain of integration, say R,
in the uv plane is. The triangle D lies in the xy plane, so to determine R we should look
at the image of D under the map u = y − x, v = y + x. In particular, we can determine
the boundary of R by looking at how this change of variables to uv coordinates acts on the
boundary of the triangle D.

For example, the side with endpoints (0, 0), (2, 0) is given by 0 ≤ x ≤ 2, y = 0. The
corresponding uv coordinates are then u = −x, v = x, 0 ≤ x ≤ 2, so this side maps to the
side v = −u,−2 ≤ u ≤ 0. In particular, in the uv plane this is a line segment with endpoints
(0, 0), (−2, 2). We also find that the other two line segments map to line segments, and
that R is actually a triangle with vertices (0, 0), (−2, 2), (2, 2).

Therefore we can describe R using inequalities 0 ≤ v ≤ 2,−v ≤ u ≤ v. We now need
to calculate the Jacobian of this transformation. We need to solve for x, y in terms of u, v.
Fortunately, in this example this is easy, and we see that x = (v−u)/2, y = (v+u)/2. The
Jacobian is given by the following determinant:∣∣∣∣ xu xv

yu yv

∣∣∣∣ =

∣∣∣∣ −1/2 1/2
1/2 1/2

∣∣∣∣ = −1/2.

Therefore, the original integral is equal to the integral

∫∫
R

eu/v(1/2) dA =
1

2

∫ 2

0

∫ v

−v
eu/v du dv =

1

2

∫ 2

0
veu/v

∣∣∣u=v
u=−v

dv =
1

2

∫ 2

0
ve− ve−1 = e− 1/e.


