Parametrization of curves

- If we are thinking of a particular particle moving around in space, the parametrization itself is important. If we only care about the points "etched out," then any parametrization will work.
- To parametrize a straight line from point a to point b, find the vector $\mathbf{d}=\mathbf{a}-\mathbf{b}$ and use the parametrization $\mathbf{r}^{\prime}(t)=\mathbf{a}+t \mathbf{d}, 0 \leq$ $t \leq 1$.
- If a parametrized curve has the form $\mathbf{r}^{\prime}(t)=$ (blah $\cdot \cos (t)$, blah $\cdot \sin (t)$, blech $)$ it is a circular motion with height equal to blech and radius equal to blah, note that blah and blech may depend on t.

Differentiation

- Curves are vector functions and hence follow rules of differentiation that are essentially vector forms of the standard rules of differentiation.
- Bucky's Theorem: $|\mathbf{r}(t)|$ constant requires $\mathbf{r} \cdot \mathbf{r}^{\prime}=\mathbf{0}$. Note that the reverse also is true.

