- If given the equation of a plane, $a x+b y+$ $c z=d$, one can produce a normal simply by pulling off the coefficients: $\langle a, b, c\rangle$.
- If the plane is tangent to a level surface of a function f one may evaluate ∇f at the point of tangency.
's Method One can take any two vectors in the plane and cross them.
S.T.P.
- The Scalar Triple Product of vectors a, b, c is $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$.
- The S.T.P represents the volume of the parallelepiped determined by the vectors in question.
- The S.T.P also represents the amount of effective force exerted by a pressure represented by a on a surface represented by b and \mathbf{c}.

Gradient

- The gradient is an operation that takes a function and gives a vector field.
- The gradient represents the direction of steepest ascent, and the size of that ascent.
- The gradient of a function f at p gives a vector orthogonal to the level surface $f(x, y, z)=f(p)$.
- The gradient is calculated as $\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+$ $\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}$

