Introduction

- Cardinal Rule: If you don't understand something, ask a question, as it will probably do more good than sitting in your seat thinking "Man, I don't understand ANYTHING this guy is saying!"

Dot Products

- The dot product is large when the size of the vectors are large and the vectors are close to being parallel.
- If vectors \mathbf{a}, \mathbf{b} are perpendicular, $\mathbf{a} \cdot \mathbf{b}=\mathbf{0}$
- If vectors \mathbf{a}, \mathbf{b} are parallel, $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}|$
- The above two statements can be conflated to the overall rule: $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \operatorname{Cos}(\theta)$, where θ is the angle between the vectors.
- If \mathbf{a}, \mathbf{b} are in cartesian co-ordinates, $\mathbf{a}=$ $\langle w, t, u\rangle, \mathbf{b}=\langle f, g, h\rangle$, then $\mathbf{a} \cdot \mathbf{b}=w f+t g+$ $u h$.

Cross Products

- For vectors \mathbf{a}, \mathbf{b}, the length of the cross product $\mathbf{a} \times \mathbf{b}$ is the area of the parallelogram determined by the vectors \mathbf{a} and \mathbf{b}. This length also happens to equal $|\mathbf{a}||\mathbf{b}| \operatorname{Sin}(\theta)$.
- The cross product of \mathbf{a} and \mathbf{b} is always perpendicular to both \mathbf{a} and \mathbf{b}.
- The direction of the cross product is given by the right hand rule.
- The cross product of the vectors $\langle a, b, c\rangle$ and $\langle d, e, f\rangle$ can be calculated by taking the determinant of the matrix $\left[\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \\ d & e & f\end{array}\right]$

