Note: This is a concept-based section, I would recommend trying to think about what is going on in the problems before simply pushing buttons and pulling levers.

1. Let $\mathbf{F}(x, y, z)=\left\langle\ln \left(z^{2}+1\right) y^{y}, x \cdot \ln \left(z^{2}+1\right)(1+\right.$ $\left.\ln (y)) y^{y}+x, \frac{2 x z}{z^{2}+1} y^{y}\right\rangle$. Calculate the line integral of \mathbf{F} along the line $r(t)=\langle t, t, 6 t\rangle, 0 \leq t \leq 6$. [Note: it may help to remember that $y=e^{\ln (y)}$ and therefore $y^{y}=e^{y \ln (y)}$]
2. Let $\mathbf{F}=\left\langle z^{3 / 2} \ln (y)+y^{2}, x+z^{3} \cos (x), z^{2} x^{2} y\right\rangle$.

Calculate the flux of F across the unit sphere.
3. Let V be the filled in pyramid with corners $(0,0,0),(0,3,2),(1,1,1),(3,2,-4)$. Calculate the volume integral of $f(x, y, z)=x$ on this volume.

