1. Let $\mathbf{F}(x, y, z)=\left\langle 2 x^{2} y, 3 x y^{2},-z x y\right\rangle$. What is $\nabla \cdot F$ ?

$$
\begin{gathered}
\nabla \cdot \mathbf{F}=\left\langle\frac{\delta}{\delta x}, \frac{\delta}{\delta y}, \frac{\delta}{\delta z}\right\rangle \cdot\left\langle 2 x^{2} y, 3 x y^{2},-z x y\right\rangle= \\
\frac{\delta}{\delta x} 2 x^{2} y+\frac{\delta}{\delta y} 3 x y^{2}+\frac{\delta}{\delta z}-x y z=4 x y+6 x y-x y=9 x y
\end{gathered}
$$

2. What does your answer to the above [and the appropriate theorem] indicate regarding the relationship of $\iiint_{V}-3 x y d V$ and $\iint_{S}\left\langle 2 x^{2} y, 3 x y^{2},-z x y\right\rangle \cdot \mathbf{d S}$ where $V$ is the [positively oriented] unit ball and $S$ is the [positively oriented] unit sphere?

Since $9 x y=-3(3 x y)$ we should have that

$$
\iint_{\partial V}\left\langle 2 x^{2} y, 3 x y^{2},-z x y\right\rangle \cdot \mathbf{d S}=-3 \iiint_{V}-3 x y d V
$$

3. Is there a vector function $G$ such that $\mathbf{F}=\nabla \times G$ ? [Where $F$ is the $F$ in the first problem.] Why?

Since $\nabla \cdot F \neq 0$ we cannot have $\mathbf{G}$ such that $\mathbf{F}=\nabla \times \mathbf{G}$ since then we would have $9 x y=\nabla \cdot \mathbf{F}=\nabla \cdot(\nabla \times \mathbf{G})=0$, which is not true in general.

