First technique.

- If $\mathbf{F} = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle = \nabla f$ then we must have
 - 1. $\frac{\partial f}{\partial x} = P(x, y, z)$
 - 2. $\frac{\partial f}{\partial y} = Q(x, y, z)$

3.
$$\frac{\partial f}{\partial z} = R(x, y, z)$$

- We will use the example $\mathbf{F} = \langle yz, xz + z, xy + 2z + y \rangle$
- We thus set $f = \int P(x, y, z)dx + g(y, z) = \int yzdx + g(y, z)$
- From this we get f = xyz + g(y, z).

- From the second equation we then have $xz + \frac{\partial g}{\partial y} = xz + z \rightarrow \frac{\partial g}{\partial y} = z.$
- Thus we have that $g(x,y) = \int z dy + h(z)$. So g(x,y) = yz + h(z).
- Since f = xyz + g(y, z) we then have f = xyz + yz + h(z)
- From the third equation we have $xy + y + \frac{dh}{dz} = xy + 2z + y$.
- Thus we have $h(z) = \int 2z dz = z^2$.
- Putting all of this together, we have: $f = xyz + yz + z^2$.

Second Technique

- If we remember that $\int_a^b \mathbf{F} \cdot \mathbf{r}' d\mathbf{s} = f(r(b)) f(r(a))$, and we allow ourselves the luxury of setting $f(\langle 0, 0, 0 \rangle) = 0$, then we see that we can calculate $f(\langle a, b, c \rangle)$ quickly by simply picking a path from $\langle 0, 0, 0 \rangle$ to $\langle a, b, c \rangle$ that is particularly easy to use.
- . In particular we will use a path that first goes from $\langle 0, 0, 0 \rangle$ to $\langle a, 0, 0 \rangle$, then a path from $\langle a, 0, 0 \rangle$ to $\langle a, b, 0 \rangle$, and then finally from $\langle a, b, 0 \rangle$ to $\langle a, b, c \rangle$.
- We will add the integrals over these three trips up to get the integral of the full path [and hence the value of f.
- We use the same example as earlier: $\mathbf{F} = \langle yz, xz + z, xy + y + 2z \rangle$.

- For the first leg $r(t) = \langle t, 0, 0 \rangle$ $0 \leq t \leq a$. Thus $\int_0^a = \mathbf{F} \cdot r'(t)dt = \langle (0)(0), t(0) + 0, t(0) + 0 + 2(0) \rangle \cdot \langle 1, 0, 0 \rangle = \int_0^a (0)(0)dt = 0$ [note that y=0, z=0 on this path...that is where the 0's came from].
- For the second leg $r(t) = \langle a, t, 0 \rangle$ $0 \le t \le b$. Thus $\int_0^b \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_0^b \langle t(0), a(0) + 0, at + t + 2(0) \rangle \langle 0, 1, 0 \rangle = \int_0^b 0 dy = 0$ [Note on this leg x = a and z = 0, which is where those letters came from].
- For the third leg $r(t) = \langle a, b, t \rangle$ for $0 \le t \le c$, so $\int_0^c \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_0^c ab + b + 2t dt = abc + bc + b^2 - ab(0) - b(0) - 0^2 = abc + bc + c^2$.
- Since the point $\langle a, b, c \rangle$ was any point, and $f(\langle a, b, c \rangle)$ must equal the value of this integral, we get that $f(\langle x, y, z \rangle = xyz + yz + z^2$.