First technique.

- If $\mathbf{F}=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle=\nabla f$ then we must have

1. $\frac{\partial f}{\partial x}=P(x, y, z)$
2. $\frac{\partial f}{\partial y}=Q(x, y, z)$
3. $\frac{\partial f}{\partial z}=R(x, y, z)$

- We will use the example $\mathbf{F}=\langle y z, x z+$ $z, x y+2 z+y\rangle$
- We thus set $f=\int P(x, y, z) d x+g(y, z)=$ $\int y z d x+g(y, z)$
- From this we get $f=x y z+g(y, z)$.
- From the second equation we then have $x z+\frac{\partial g}{\partial y}=x z+z \rightarrow \frac{\partial g}{\partial y}=z$.
- Thus we have that $g(x, y)=\int z d y+h(z)$. So $g(x, y)=y z+h(z)$.
- Since $f=x y z+g(y, z)$ we then have $f=$ $x y z+y z+h(z)$
- From the third equation we have $x y+y+$ $\frac{d h}{d z}=x y+2 z+y$.
- Thus we have $h(z)=\int 2 z d z=z^{2}$.
- Putting all of this together, we have: $f=$ $x y z+y z+z^{2}$.

Second Technique

- If we remember that $\int_{a}^{b} \mathbf{F} \cdot \mathbf{r}^{\prime} \mathbf{d s}=f(r(b))-$ $f(r(a))$, and we allow ourselves the luxury of setting $f(\langle 0,0,0\rangle)=0$, then we see that we can calculate $f(\langle a, b, c\rangle)$ quickly by simply picking a path from $\langle 0,0,0\rangle$ to $\langle a, b, c\rangle$ that is particularly easy to use.
- . In particular we will use a path that first goes from $\langle 0,0,0\rangle$ to $\langle a, 0,0\rangle$, then a path from $\langle a, 0,0\rangle$ to $\langle a, b, 0\rangle$, and then finally from $\langle a, b, 0\rangle$ to $\langle a, b, c\rangle$.
- We will add the integrals over these three trips up to get the integral of the full path [and hence the value of f.
- We use the same example as earlier: $\mathbf{F}=$ $\langle y z, x z+z, x y+y+2 z\rangle$.
- For the first leg $r(t)=\langle t, 0,0\rangle 0 \leq t \leq$ a. Thus $\int_{0}^{a}=\mathbf{F} \cdot r^{\prime}(t) d t=\langle(0)(0), t(0)+$ $0, t(0)+0+2(0)\rangle \cdot\langle 1,0,0\rangle=\int_{0}^{a}(0)(0) d t=0$ [note that $y=0, z=0$ on this path...that is where the 0's came from].
- For the second leg $r(t)=\langle a, t, 0\rangle 0 \leq t \leq b$. Thus $\int_{0}^{b} \mathbf{F} \cdot \mathbf{r}^{\prime}(\mathbf{t}) d t=\int_{0}^{b}\langle t(0), a(0)+0, a t+$ $t+2(0)\rangle\langle 0,1,0\rangle=\int_{0}^{b} 0 d y=0$ [Note on this leg $x=a$ and $z=0$, which is where those letters came from].
- For the third leg $r(t)=\langle a, b, t\rangle$ for $0 \leq t \leq c$, so $\int_{0}^{c} \mathbf{F} \cdot \mathbf{r}^{\prime}(\mathbf{t}) d t=\int_{0}^{c} a b+b+2 t d t=a b c+b c+$ $b^{2}-a b(0)-b(0)-0^{2}=a b c+b c+c^{2}$.
- Since the point $\langle a, b, c\rangle$ was any point, and $f(\langle a, b, c\rangle)$ must equal the value of this integral, we get that $f\left(\langle x, y, z\rangle=x y z+y z+z^{2}\right.$.

