Fundamental Theorem of Line Integrals.

- If we remember that $g=\frac{d f}{d t}$ meant that $\int_{b}^{a} g d t=f(b)-f(a)$ it makes sense in a vector setting that $\mathbf{F}=\nabla f$ implies $\int_{b}^{a} \mathbf{F} \cdot \mathbf{r}^{\prime}(\mathbf{t}) d t=$ $f(\mathbf{r}(\mathbf{b}))-f(\mathbf{r}(\mathrm{t}))$.
- f is related to the " potential energy" caused by the force F. It is actually the negative of it.
- To decide if a vector function \mathbf{F} is the gradient of some other function, calculate the curl of \mathbf{F}. In particular if $\nabla \times \mathbf{F}=\mathbf{0}$ then there exists some function f such that $\mathbf{F}=\nabla f$.
- if $\mathbf{F}=\nabla f$ then $\int_{a}^{b} \mathbf{F}(\mathbf{r}(\mathbf{t})) \cdot \mathbf{f}^{\prime}(\mathbf{t}) d t=f(\mathbf{r}(\mathbf{b}))-$ $f(\mathbf{r}(\mathbf{a}))$...in particular it does not depend on path but only the end-points.

Curl

- If we think of ∇ as a 'vector' in the sense that $\nabla=\frac{\partial}{\partial x} \widehat{\mathbf{i}}+\frac{\partial}{\partial y} \widehat{\mathbf{j}}+\frac{\partial}{\partial z} \widehat{\mathbf{k}}$ then the curl can be calculated as $\nabla \times \mathbf{F}$, the cross product of the 'vector' ∇ and the vector-function $\mathbf{F}=f_{1} \widehat{\mathbf{i}}+f_{1} \widehat{\mathbf{j}}+f_{3} \widehat{\mathbf{k}}$ [note that the f_{1}, f_{2}, f_{3} have nothing to do with f [where $\mathbf{F}=\nabla \times f$, but are merely the components of \mathbf{F}...so if $\mathbf{F}=\left\langle x^{2}, x y, y^{2} z\right\rangle$, then $f_{1}=x^{2}, f_{2}=x y$, $f_{3}=y^{2} z$.]

