- The vector Line Integral of a vector function $\mathbf{F}$ along a curve $\mathbf{r}(\mathbf{t}), a \leq t \leq b$ is $\int_{a}^{b} \mathbf{F}(\mathbf{r}(\mathbf{t})) \cdot \frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(\mathbf{t})\right|}\left|\mathbf{r}^{\prime}(\mathbf{t})\right| d t$.
- The above can be shortened to simply

$$
\int_{a}^{b} \mathbf{F}(\mathbf{r}(\mathbf{t})) \cdot \mathbf{r}^{\prime}(\mathbf{t}) d t
$$

- The $\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(\mathrm{t})\right|}$ takes into account that we only care about the direction of the force tangent to the curve.
- The $\left|\mathbf{r}^{\prime}(\mathbf{t})\right| d t$. Takes into account that our speed may not be 1 .
- The work done by a force $\mathbf{F}$ on a particle moving along a curve parametrized by $\mathbf{r}(\mathbf{t})$ is the vector line integral of $\mathbf{F}$ along the path $\mathbf{r}(t)$.

