- The vector Line Integral of a vector function \mathbf{F} along a curve $\mathbf{r}(\mathbf{t}), a \leq t \leq b$ is $\int_a^b \mathbf{F}(\mathbf{r}(\mathbf{t})) \cdot \frac{\mathbf{r}'(t)}{|\mathbf{r}'(\mathbf{t})|} |\mathbf{r}'(\mathbf{t})| dt$.
- The above can be shortened to simply

$$\int_{a}^{b} \mathbf{F}(\mathbf{r}(\mathbf{t})) \cdot \mathbf{r}'(\mathbf{t}) dt$$

- The $\frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ takes into account that we only care about the direction of the force tangent to the curve.
- The $| \mathbf{r}'(\mathbf{t}) | dt$. Takes into account that our speed may not be 1.
- The work done by a force F on a particle moving along a curve parametrized by r(t) is the vector line integral of F along the path r(t).