Scalar Line Integral [Path Integral]

- when path is parametrized by arc length, we have a natural analog of the integral done earlier in 1 dimension. In fact we have that the integral of a scalar function f along a curve $r(s)$ is simply $\int f(r(s)) d s$.
- The above does not work for all parametrizations because the speed may not be constantly 1. [We think of the earlier integrals as integrals on the x-axis with the parametrization being $r(t)=<t, 0,0>$, which has speed 1].
- For arbitrary parametrizations $r(t)$ we can calculate the scalar line integral as $\int f(r(s)) d s=$ $\int f(r(t)) \frac{d s}{d t} d t=\int f(r(t))\left|r^{\prime}(t)\right| d t$.
- The most obvious application of a scalar line integral is to find the mass of an object whose density fluctuates...in particular if μ is linear density we have $m=\int \mu(r(s)) d s$.

