Generalized Derivative

- Is a generalization of the "normal" derivative in the sense that it approximates the change in the range given a change in the domain.
- If there is any hope at all, the derivative of a function is the derivative matrix, whose entries are the partial derivatives. rows correspond to range variables and columns correspond to domain variables.
- The above matrix may not work because it is possible that simply knowing the change in each of the "co-ordinate" directions is not enough to describe the local behavior of the function.
- If $\mathbf{F}: \Re^{m} \rightarrow \Re^{n}$ is a function. We say that \mathbf{F} is differentiable at a point $\hat{q}=\left\langle q_{1}, q_{2}, \ldots, q_{m}\right\rangle$ if $\lim _{\hat{h} \rightarrow 0} \mathbf{F}(\hat{\mathbf{q}}+\hat{\mathbf{h}})-\mathbf{F}(\hat{\mathbf{q}})-D \mathbf{F}_{\hat{q}} \cdot$ matrix \widehat{h} goes to $\widehat{0}$ "faster" than \hat{h} does.
- It is sufficient to find that the each component of the difference contains more than 1 power of a component of h in it. So if the difference is $\left\langle h_{1} h_{2}, 2 h_{2}^{2}, 0\right\rangle$, then that is good enough.
- The derivative approximates the change in the function in the sense that $D F \cdot{ }_{\text {matrix }} \hat{a}$ represents the approximate change in the function as you move \hat{a} away from the base point.
- With the above in mind we can say that the velocity in the range [which is a vector] of the image of a path $\mathbf{r}(\mathbf{t})$ in the domain can be found by computing $D F \cdot \operatorname{matrix}^{\mathbf{r}^{\prime}(\mathbf{t}) \text {. }}$

