Vector Surface Integrals

- if $G(u, v) \rightarrow\left\langle g_{1}, g_{2}, g_{3}\right\rangle, a \leq v \leq b, c(v) \leq u \leq$ $d(v)$ is a parametrization of a surface S, and F is some vector valued function, then the surface integral of F on the surface S is

$$
\iint_{S} F \cdot d A=\int_{a}^{b} \int_{c(v)}^{d(v)} F(G(u, v)) \cdot\left(G_{u} \times G_{v}\right) d u d v
$$

- If the parametrization is with $a \leq u \leq b, c(u) \leq$ $v \leq d(u)$, then the surface integral is:

$$
\int_{a}^{b} \int_{c(u)}^{d(u)} F(G(u, v)) \cdot\left(G_{u} \times G_{v}\right) d v d u
$$

- The value of the surface integral is the flow or flux through the surface.
- The value of $G_{u} \times G_{v}$ is the orientation of the surface...if it is opposite that of the flow, the integral will be negative.

