Surface Integral

- if $G(u, v)=\left\langle g_{1}(u, v), g_{2}(u, v), g_{3}(u, v)\right\rangle$ is a parametrization, then $G_{u}=\left\langle\frac{\partial g_{1}}{\partial u}, \frac{\partial g_{2}}{\partial u}, \frac{\partial g_{3}}{\partial u}\right\rangle$ and $G_{v}=\left\langle\frac{\partial g_{1}}{\partial v}, \frac{\partial g_{2}}{\partial v}, \frac{\partial g_{3}}{\partial v}\right\rangle$ represent tangent lines on the surface that correspond to movement in the u and v directions in the range. In particular $G_{u} \times G_{v}$ is a vector whose magnitude represents the amount that the (u, v) plane is being stretched out to make the surface. It is the 2 dimensional version of velocity [kind of].
- If S is a surface parametrized by $G(u, v)=$ $\left\langle g_{1}(u, v), g_{2}(u, v), g_{3}(u, v)\right\rangle$ where u, v span a region R, then the surface integral of a function $f(x, y, z)$ on the surface S can be calculated by:

$$
\iint_{S} f d A=\iint_{R} f(G(u, v))\left|G_{u} \times G_{v}\right| d u d v
$$

- The above gives a method to calculate the surface are of any surface by simply taking $f=1$.
- The above also gives a way to easily figure out the proper area differential product for arbitrary change of variables for 2 dimensional surfaces, as you can consider any such change of variables as a parametrization of a surface. For example the change of variables from polar to cartesian would be $G(u, v)=\langle u \cdot \cos (v), u$. $\sin (v), 0\rangle$ [Note: the \cdot is regular multiplication]. Here u would be the variable whose name is normally r and v is the variable whose name is normally θ. And if you calculate it you will find that $\left|G_{u} \times G_{v}\right|=u$, showing that the "finagling factor" for polar is the radius.

Alternate version for 2 variable to 2 variable transformations.

- Consider the change of variables $G(u, v)=$

$$
\left\langle g_{1}(u, v), g_{2}(u, v)\right\rangle \text {, make the matrix }\left[\begin{array}{cc}
\frac{\partial g_{1}}{\partial u} & \frac{\partial g_{1}}{\partial v} \\
\frac{\partial g_{2}}{\partial u} & \frac{\partial g_{2}}{\partial v}
\end{array}\right]
$$

- This matrix encodes the local geometry of the transformation in a way we will study soon. The determinant of the matrix represents the stretching of the transformation.
- Note, in class I may have switched the upper right-hand and lower-left-hand entries....either way will give the correct answer, but the one I have here is better as a lead-in to what we will be doing later.

