
Surface Integral

• if G(u, v) = 〈g1(u, v), g2(u, v), g3(u, v)〉 is a

parametrization, then Gu = 〈∂g1
∂u , ∂g2

∂u , ∂g3
∂u 〉

and Gv = 〈∂g1
∂v , ∂g2

∂v , ∂g3
∂v 〉 represent tangent

lines on the surface that correspond to move-

ment in the u and v directions in the range.

In particular Gu×Gv is a vector whose mag-

nitude represents the amount that the (u, v)

plane is being stretched out to make the

surface. It is the 2 dimensional version of

velocity [kind of].

• If S is a surface parametrized by G(u, v) =

〈g1(u, v), g2(u, v), g3(u, v)〉 where u, v span a

region R, then the surface integral of a

function f(x, y, z) on the surface S can be

calculated by:
∫ ∫

S
fdA =

∫ ∫

R
f(G(u, v)) | Gu ×Gv | dudv

1



• The above gives a method to calculate the

surface are of any surface by simply taking

f = 1.

• The above also gives a way to easily fig-

ure out the proper area differential prod-

uct for arbitrary change of variables for

2 dimensional surfaces, as you can con-

sider any such change of variables as a

parametrization of a surface. For exam-

ple the change of variables from polar to

cartesian would be G(u, v) = 〈u · cos(v), u ·
sin(v),0〉 [Note: the · is regular multiplica-

tion]. Here u would be the variable whose

name is normally r and v is the variable

whose name is normally θ. And if you cal-

culate it you will find that | Gu × Gv |= u,

showing that the ”finagling factor” for po-

lar is the radius.



Alternate version for 2 variable to 2 variable

transformations.

• Consider the change of variables G(u, v) =

〈g1(u, v), g2(u, v)〉, make the matrix




∂g1
∂u

∂g1
∂v

∂g2
∂u

∂g2
∂v




• This matrix encodes the local geometry of

the transformation in a way we will study

soon. The determinant of the matrix rep-

resents the stretching of the transforma-

tion.

• Note, in class I may have switched the

upper right-hand and lower-left-hand en-

tries....either way will give the correct an-

swer, but the one I have here is better as

a lead-in to what we will be doing later.


