Parametrizations of standard surfaces:

- Disk: $(u, v) \rightarrow\langle r \cdot u \cos (v), r \cdot u \sin (v)\rangle \quad 0 \leq$ $v<2 \pi, 0 \leq u \leq 1 . r$ is the radius.
- Elliptical Disk: $(u, v) \rightarrow\left\langle r_{1} \cdot u \cos (v), r_{2} \cdot\right.$ $u \sin (v)\rangle$, where r_{1} and r_{2} are the focal radii....that is to say that the ellipse that is the boundary has the equation $\frac{x^{2}}{r_{1}^{2}}+\frac{y^{2}}{r_{2}^{2}}=1$.
- Sphere: $(u, v) \rightarrow\langle r \cdot \sin (u) \cos (v), r \cdot \sin (u) \sin (v), r$. $\cos (u)\rangle . r$ is the radius.
- Graph of surface $\mathrm{f}(\mathrm{X}, \mathrm{y}):(u, v) \rightarrow\langle u, v, f(u, v)\rangle$.

Surfaces bounded by cylinders and cones

- If the cylinder is of the form $x^{2}+y^{2}=$ A, then parametrize, then we realize that the surface we want lies above the disk bounded by $x^{2}+y^{2}=A$. First parametrize this disk, and use that parametrization to parametrize the surface using the "graph" technique from above.
- If the bounding surface is a cone, attempt to find an equation given the boundary only in x and y, normally an elliptical disk. Parametrize that region, and then use the gragph technique.

