## Assorted Probability Notes

- $P(A \wedge B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B) \rightarrow$ $P(B \mid A)=P(A \mid B) \cdot \frac{P(B)}{P(A)}$
- if $f$ is the probability density function associated with an event $x$, then $P$ ( $\times$ occurs by time t ) $\int_{0}^{t} f(x) d x$.
- if $P, Q$ are the probabilities for events $x$ and $y$ happening by a particular time [that is $P(t)$ is the probability that $x$ happens by time $t$, and $Q(t)$ is the probability that $y$ happens by $t$, and if $P(t)=k Q(t)$ for all $t<T$, then $f_{x}=k f_{y}$ for all $t<T$ where $f_{x}$ is the probability density function for event $x$ and $f_{y}$ is the probability density function for event $y$.

