Chapter 16, section 9, number 18:
We are told to use the parametrization $G(u, v, w)=\langle a u, b v, c w\rangle, 0 \leq u \leq 1,0 \leq$ $v \leq 1,0 \leq w \leq 1$. The Jacobian for this transformation is $\left|\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right|=a b c$.

We must decide what the proper limits of integration are. We choose the order $d w d v d u$. Since we have that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, plugging in the parametrization variables give $u^{2}+v^{2}+w^{2}=1$. The absolute bounds on u are -1 and 1 For a fixed u we have that the biggest and smallest possible values for v occur when $w=0$ and in that case we have that $v=-\sqrt{1-u^{2}}$ and $v=\sqrt{1-u^{2}}$. Finally for a fixed u and v, w can range from $-\sqrt{1-u^{2}-v^{2}}$ to $\sqrt{1-u^{2}-v^{2}}$. Hence the triple integral we are looking for is:

$$
\int_{-1}^{1} \int_{-\sqrt{1-u^{2}}}^{\sqrt{1-u^{2}}} \int_{-\sqrt{1-u^{2}-v^{2}}}^{\sqrt{1-u^{2}-v^{2}}}(a u)^{2}(b v)(a b c d w d v d u)
$$

Since there is no w in the integrand this is:

$$
\int_{-1}^{1} \int_{-\sqrt{1-u^{2}}}^{\sqrt{1-u^{2}}} 2 \sqrt{1-u^{2}-v^{2}}(a u)^{2}(b v)(a b c d v d u)
$$

By using a substitution: $m=1-u^{2}-v^{2}$ we get that this equals

$$
\int_{-1}^{1}-\left.a^{2} u^{2} b a b c \frac{2}{3}\left(\sqrt{1-u^{2}-v^{2}}\right)^{3 / 2}\right|_{-\sqrt{1-u^{2}}} ^{\sqrt{1-u^{2}}} d v d u=0
$$

17.8 Problem 3.

We are asked to evaluate $\iint_{S} \nabla \mathbf{F} \times \mathbf{d S}$ For S the upper hemisphere oriented upwards. From Stokes theorem we have $\iint_{S} \nabla \mathbf{F} \times \mathbf{d S}=\int_{\partial S} \mathbf{F} \cdot \mathbf{d r} . \partial S$ is the circle of radius 2 in the $x y$ plane, centered at the origin. Since S is oriented with upward pointing normal vector, we must have that ∂S is the circle traversed in the counterclockwise direction, so $\mathbf{r}(\mathbf{t})=\langle 2 \cos (t), 2 \sin (t), 0\rangle$ suffices as a parametrization. Since when $z=0$ we have that $\mathbf{F}=\left\langle x^{2}, y^{2}, 0\right\rangle$, we then have that

$$
\begin{gathered}
\int_{\partial S} F \cdot d r=\int_{0}^{2 \pi}\left\langle 4 \cos ^{2}(t), 4 \sin ^{2}(t), 0\right\rangle \cdot \mathbf{r}^{\prime}(\mathbf{t}) d t=\int_{0}^{2 \pi}\left\langle 4 \cos ^{2}(t), 4 \sin ^{2}(t), 0\right\rangle \cdot\langle-\sin (t), \cos (t), 0\rangle d t= \\
\int_{0}^{2 \pi}-4 \cos ^{2}(t) \sin (t)+4 \sin ^{2}(t) \cos (t) d t=\left.\frac{4}{3}\left(\cos ^{3}(t)+\sin ^{3}(t)\right)\right|_{0} ^{2 \pi}=0
\end{gathered}
$$

17.9 problem 7.

We are asked to calculate the flux through cube of side length 2 centered at the origin of the function $\mathbf{F}=\left\langle 3 y^{2} z^{3}, 9 x^{2} y z^{2},-4 x y^{2}\right\rangle . \nabla \cdot \mathbf{F}=0+9 x^{2} y^{2}+0$ and the divergence theorem says $\iint_{\partial V} \mathbf{F} \cdot \mathbf{d S}=\iiint_{V} \nabla \cdot \mathbf{F} d V$.

Since we have a cube we can use the parametrization $G(u, v, w)=\langle x, y, z\rangle$. Since the Jacobian in this very special case is 1 we have simply.

$$
\text { Flux }=\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} 9 u^{2} w^{2} d u d v d w=8
$$

