Math 13: Written Homework \#4. Due Wednesday, October 14. (NOT THE 21st!!)

1. (§15.10, \#19.) Use the transformation $x=u / v$ an $y=v$ to evaluate

$$
\iint_{R} x y d A
$$

where R is the planar region in the first quadrant bounded by the lines $y=x, y=3 x$, and the hyperbolas $x y=1$ and $x y=3$.
2. (§15.10, \#23.) Use an appropriate change of variables to evaluate

$$
\iint_{R} \frac{x-2 y}{3 x-y} d A
$$

where R is the parallelogram enclosed by the lines $x-2 y=0, x-2 y=4,3 x-y=1$ and $3 x-y=8$.
3. Let E be a solid region lying above the $x y$-plane and inside the ellipsoid

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1 .
$$

Assuming that E has constant density k, find the center of mass $(\bar{x}, \bar{y}, \bar{z})$ of E. You may assume that, by symmetry, $\bar{x}=0=\bar{y}$. (Suggestion: make a change of variables so that you can use spherical coordinates.)
4. ($£ 14.3, \# 72$.) Let $g(x, y, z)=\sqrt{1+x z}+\sqrt{1-x y}$. Compute $g_{x y z}$. (This problem is very easy if you use a different order of differentiation for each term.)
5. ($\S 14.4, \# 42$.$) Suppose you need to know the equation of the tangent plane to a surface$ S at the point $(2,1,3)$. You don't have an equation for S, but you know that the curves $\mathbf{r}(t)=\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle$ and $\mathbf{s}(u)=\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle$ both lie on S. Find the equation of the tangent plane at the point $(2,1,3)$.

