Math 13: Written Homework \#3. Due Wednesday, October 7.

1. Find the volume of the solid that lies between the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.
2. ($\S 15.8 \# 28$) Find the mass of the ball B given by $x^{2}+y^{2}+z^{2} \leq a^{2}$ if the density at any point of the ball is proportional to its distance from the z-axis. (You may do the problem any way you wish, but spherical coordinates give a simpler integral.)
3. ($\S 15.9 \# 28)$ Find the average distance of a point in a solid ball of radius a to its center.
4. ($\S 12.4 \# 48$) Suppose that \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in \mathbf{R}^{3} such that $\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}$. Show that $\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{c}=\mathbf{c} \times \mathbf{a}$.
5. (§15.10 \#18) Evaluate

$$
\iint_{R}\left(x^{2}-x y+y^{2}\right) d A
$$

where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$. Use the change of variables $x=\sqrt{2} u-\sqrt{2 / 3} v$ and $y=\sqrt{2} u+\sqrt{2 / 3} v$.
6. ($\$ 15.10 \# 14$) Let R be the region in the first quadrant bounded by the hyperbolas $y=1 / x$, $y=4 / x$, and the lines $y=x$ and $y=4 x$. Find the equations for the transformation T that maps a rectangular region S of the $u v$-plane onto R, where the sides of S are parallel to the u - and v-axes.

