A Comment on Iterated Integrals

Today (Monday, September 21), we looked at the integral
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where R is the rectangle [0,2] x [0,1]. At first blush, this seemed easy. As
we saw in lecture, Fubini’s Theorem says that
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The puzzling thing was that Fubini’s Theorem also tells us that
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To do the first integral, we used integration by parts with v = x and dv =

e®dx. Then du = dx and v = =e*. This resulted in
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Unfortunately, it is not at all clear how to find an anti-derivative for the
integrand in (1). We know from Fubini’s Theorem that the answer is e* — 3,
but it does not seem fair that we can’t work it out.

It turns out that we can do the integral, but we need a bit of hard work.
(What follows is very similar to what is done in Example 3 of §15.2 of our
text.)

Integration by parts tells us that
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Written another way,
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Since these are indefinite integrals, this just means that any antideriva-
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Consequently,
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Of course, as we observed in class, it is just way easier to use the first
method.



