Math 13 Fall 2004

Calculus of Vector-valued Functions

Example of a function that has different mixed partial derivatives at (0,0)

October 4, 2004

Define a scalar-valued function of two variables

> f := (x, y) -> x * y * (x^2 - y^2) / (x^2 + y^2);

$$f := (x, y) \to \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

Have a look at its graph

```
> plot3d(f(x, y), x = -1..1, y = -1..1);
```


Both partial derivatives of f are continuous everywhere, so f is differentiable at (0, 0)

```
> f_x := factor(diff(f(x, y), x));

f_y := factor(diff(f(x, y), y));

f_-x := \frac{y(x^4 - y^4 + 4x^2y^2)}{(x^2 + y^2)^2}
f_-y := \frac{x(x^4 - y^4 - 4x^2y^2)}{(x^2 + y^2)^2}
> plot3d(f_x, x = -2..2, y = -2..2);

plot3d(f_y, x = -2..2, y = -2..2);
```


Let's explicitly compute the mixed partial derivatives of f at (0, 0)

They are <u>different!!!</u>

Let's plot both mixed partial derivatives of f

```
> plot3d(diff(f(x, y), y, x), x = -1..1, y = -1..1);
plot3d(diff(f(x, y), x, y), x = -1..1, y = -1..1);
```


They are obviously discontinuous!!!

Remark: mixed partial derivatives are the same away from (0, 0)

```
> factor(diff(f(x, y), y, x));

factor(diff(f(x, y), x, y));

\frac{(-y+x)(x+y)(y^4+10x^2y^2+x^4)}{(x^2+y^2)^3}
\frac{(-y+x)(x+y)(y^4+10x^2y^2+x^4)}{(x^2+y^2)^3}
```