MATH 11: MULTIVARIABLE CALCULUS
 FALL 2018 HOMEWORK $\# 9$

Please turn in your completed homework assignment by leaving it in the boxes labeled "Math 11 " in the hallway outside of Kemeny 105 anytime before 3:30 p.m. on Tuesday, November 13.

Problem 1. Find $\iint_{S}\left\langle\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right\rangle$ by parametrizing the surface and directly evaluating the surface integral, where
(a) S is the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, oriented with normal vector pointing outward.
(b) S is the disc $x^{2}+y^{2} \leq 1$ in the plane $z=1$, oriented with normal vector pointing upward.

Problem 2. Compute the curl of the vector field $F(x, y, z)=\left\langle e^{x}+y^{2}, y^{2}+z^{2}, \sin (z)+x^{2}\right\rangle$, and use Stokes' Theorem to find
(a) $\int_{\gamma} F \cdot d \vec{r}$, where γ is the ellipse $3 x^{2}+2 y^{2}=6$ in the plane $z=1$, oriented counterclockwise as viewed from above. Hint: γ is the boundary of a surface contained in the plane $z=1$.
(b) $\iint_{S} \operatorname{curl}(F) \cdot \vec{n} d S$, where S is the portion of the paraboloid $z=7-3 x^{2}-2 y^{2}$ above the plane $z=1$, oriented with normal vector pointing upward.
Problem 3. Compute the divergence of the vector field

$$
F(x, y, z)=\left\langle\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right\rangle
$$

Use this, the divergence theorem, the results of problem 1 if applicable, and symmetry if it helps, to find $\iint_{S} F \cdot \vec{n} d S$ without directly evaluating any additional surface integrals, where
(a) S is a sphere of radius 1 with center $(-1,1,1)$. Hint: Are there any points at which $\nabla \cdot F$ is problematic? Are they inside or on S ?
(b) S is a sphere of radius 3 with center $(-1,1,1)$. Hint: If you are not sure how to get started on this one, look at the subsection "Application to Electrostatic Fields" of Section 6.8 of the textbook.
(c) S is the cylindrical surface $x^{2}+y^{2}=1,-1 \leq z \leq 1$, oriented with normal vector pointing away from the z-axis. Hint: S is part of the surface of the three-dimensional region given by $x^{2}+y^{2}+z^{2} \leq 1,-1 \leq z \leq 1$, oriented with normal vector pointing outward. The strategy from part (b) may be helpful.

