MATH 11: MULTIVARIABLE CALCULUS
 FALL 2018 HOMEWORK \#7

Please turn in your completed homework assignment by leaving it in the boxes labeled "Math 11" in the hallway outside of Kemeny 105 anytime before 3:30 p.m. on Wednesday, October 31.

Problem 1. Let C be the union of the straight line starting at $(0,0)$ and ending at $(2,1)$ with the quarter circle from $(2,1)$ to $(3,0)$ with center $(2,0)$ traversed clockwise.
(a) Compute $\int_{C} x y d s$.
(b) Compute $\int_{C} y d x-x d y$.
(c) Describe how your answers to (a) and (b) would change if C were replaced with $-C$, that is, the same path traversed in the opposite sense.

Problem 2.

(a) Consider the vector field

$$
\mathbf{F}=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle
$$

and the curve C parametrized as $\mathbf{r}(t)=\langle t, \sin \pi t\rangle$, with $1 \leq t \leq 2$. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Explain how you got your answer.
(b) The vector field \mathbf{F} is not continuous at $(x, y)=(0,0)$. Nevertheless, \mathbf{F} is a conservative vector field. Show this directly by finding a potential function $f(x, y)$ for F.
(c) Let C be the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$, with counter clockwise orientation. Observe that the ellipse circles around the singular point $(0,0)$. Find the value of $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$. Justify your answer.

